

Agenda

- VHDL / Verilog
- A Few Introductory Pointers
- A Quick Run through the System

What is VHDL and Verilog

- Popular entry method for FPGA / ASIC designs
 - Verilog popular with ASIC engineers
 - VHDL popular with FPGA designers
- Originally designed for simulation / verification
- Now used to create (synthesize) a design from the description
- Just another programming language
 - Verilog looks and feels like 'C'

BE NOT AFRAID!

- VHDL looks and feels like Ada
- REPEAT: Just another programming language

So What's the Difference?

Traditional Programming Language

- Runs on a processor
- Processor performs sequential operations

```
Then, do this.
Then do this.
Afterwards, do this.
Followed by this.
```

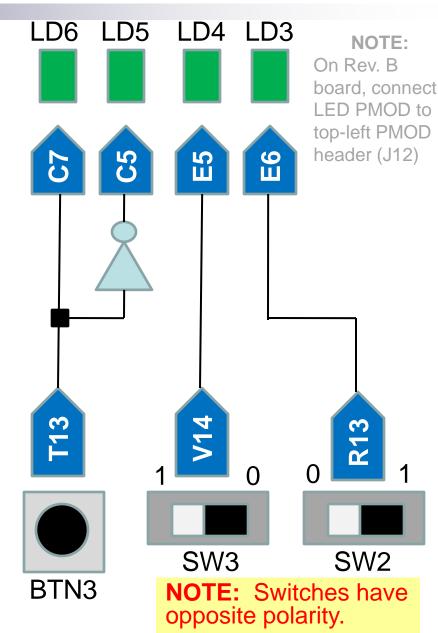
VHDL / Verilog

- Runs on a processor for simulation purposes
- Designed to run in actual hardware
- Hardware is inherently parallel

Do this.
While doing this.
And doing this.
Simultaneously doing this.
And this.

Traditional programming languages not designed to describe parallel operations

SiliconBlue's Expectations



- You are not expected to be an expert VHDL / Verilog coder
- But, be able to demonstrate the iCECUBE design flow and iCEman65 board
 - Requires a basic understanding of VHDL/Verilog
 - Be able to recognize VHDL or Verilog when you encounter it

LED Wires Example

SiliconBlue

- Your job? Simple! Build low-power programmable wires using the iCEman65 board
- Pick your language
 - VHDL
 - Verilog
- Implement it and download it to the board

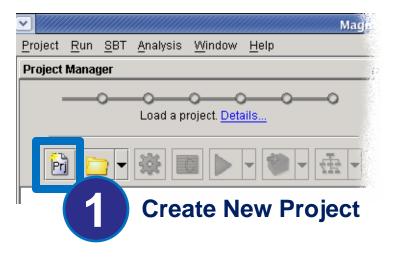
First Things First

- When writing a program, what things do you do first?
 - Declare any required libraries
 - Declare variable names
 - Declare the data type for each variable
- Then
 - Define how variable values are assigned
- Knowing that VHDL and Verilog are just another programming language, what should we do?

Verilog Example


```
module led_wires (BTN3, SW, LD);
    // Declare inputs and outputs and their widths
                 BTN3;
    input
    input [3:2] SW;
    output [6:3] LD;
    // Connect LEDs LD4 and LD3 directly to switches SW3 and SW2
    assign LD[4:3] = SW[3:2];
    // Connect pushbutton BTN3 directly to LD6
    assign LD[6] = BTN3;
    // Invert BTN3 and then connect it directly to LD5
    assign LD[5] = \simBTN3;
```

endmodule


VHDL Example


```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Declare inputs and outputs and their widths
entity led_wires is
     port ( BTN3 : in STD_LOGIC;
        SW : in STD_LOGIC_VECTOR (3 downto 2);
        LD : out STD_LOGIC_VECTOR (6 downto 3)
end led_wires;
architecture Behavioral of led wires is
begin
     -- Connect LEDs LD4 and LD3 directly to switches SW3 and SW2
     LD(4 downto 3) <= SW(3 downto 2);
-- Connect pushbutton BTN3 directly to LD6
     LD(6) \leftarrow BTN3;
     -- Invert BTN3 and then connect it directly to LD5
     LD(5) \leftarrow not(BTN3);
end Behavioral ;
```

Start a New Project

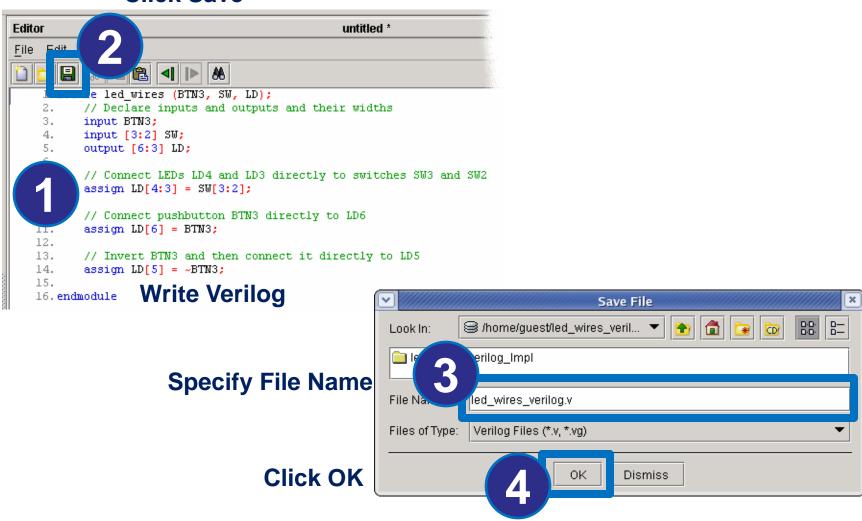
Enter Project Name, Location

Right-click, New Files → Verilog

Set Implementation Options

Set to iCE65 device on board

- 65L04
- **CB284**



Click OK

Create, Save Verilog File

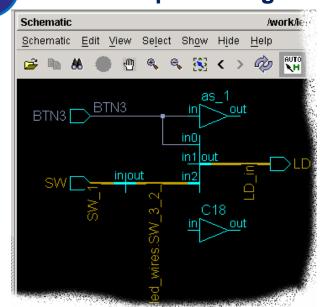
Click Save

Check Verilog for Errors

Click Drop-list

Click

Schematic Viewer

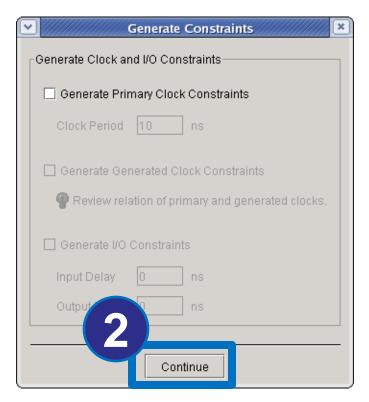

Check that schematic matches expected logic

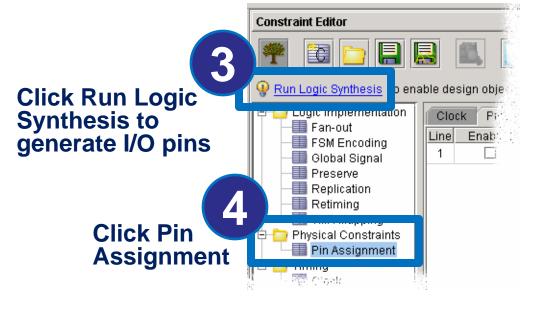
Schematic Viewer

Check for successful design message in Output window.

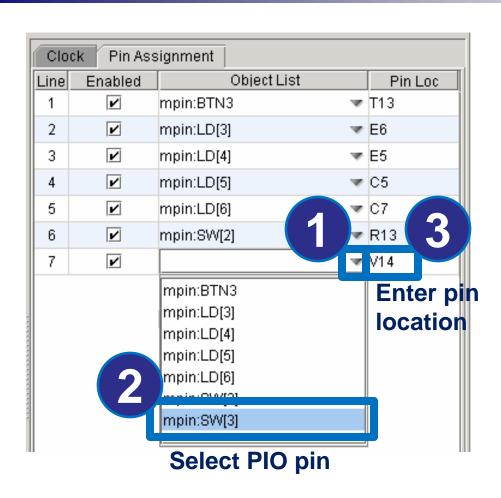
If errors encountered, fix them then restart from Step 1.

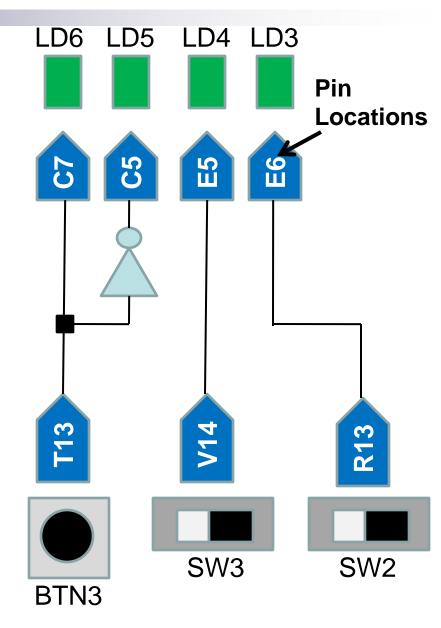
FPGA-7 RTL Analysis successful




Create Pin Assignment

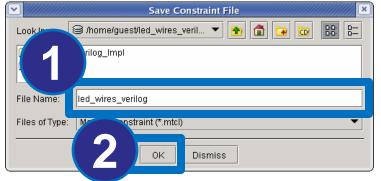
Click Constraints button





No clocks to define. Click Continue

Assign PIOs



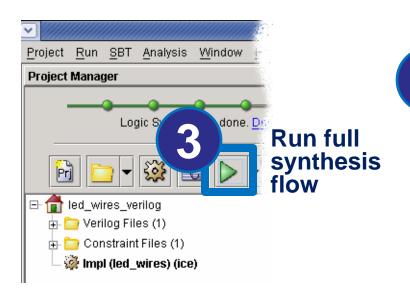
Complete Design

Enter constraints file name (*.mtcl)

Check output file that expected amount of logic was created

Info: Design statistics for front-end:

Number of FFs:


Number of LUTs:

Number of RAMs:

Number of combinational nodes:

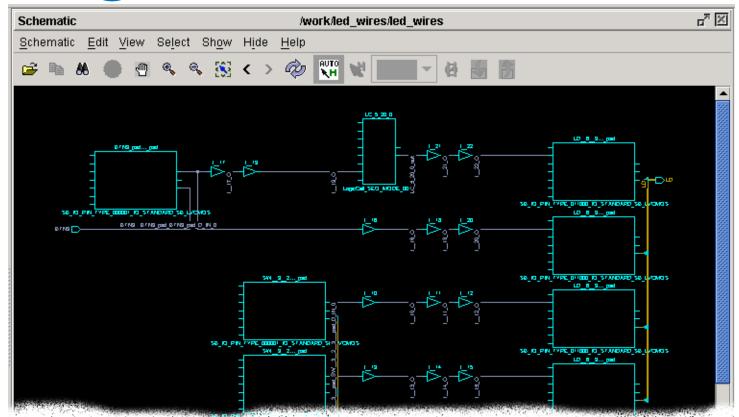
Number of literals (SOP):

Click OK

Check for successful design message in Output window.

FPGA-24 FPGA Flow successful

View Final Results


Click Drop-list

Schematic Viewer

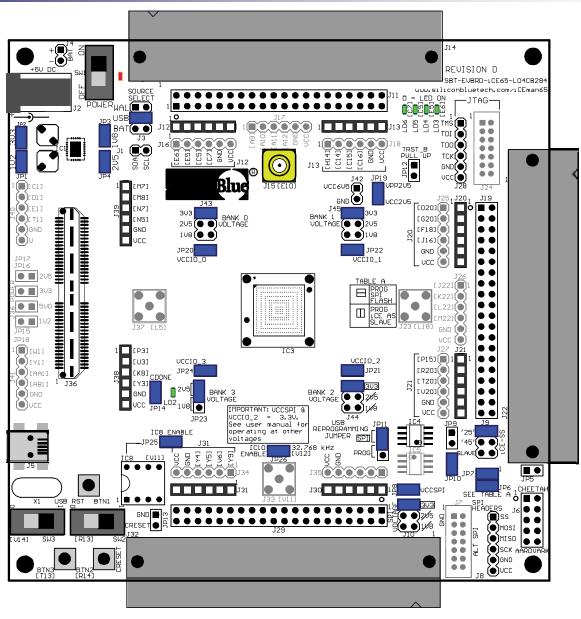
Click Schematic Viewer

3

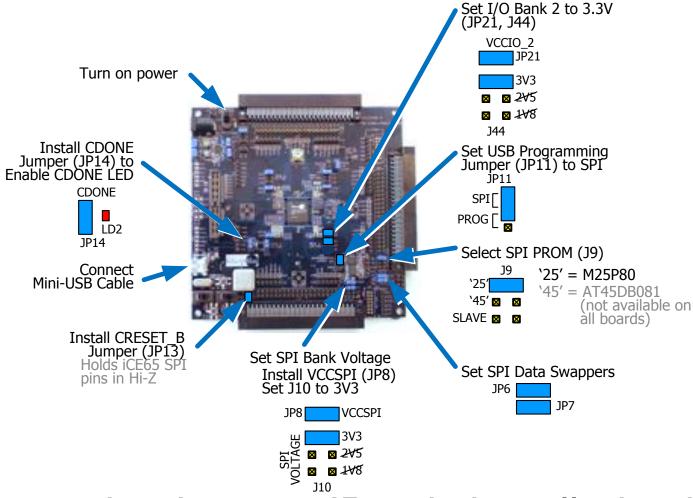
Check that schematic matches expected logic

Important Files Created

File	Location	Description
<proj_name>.prj</proj_name>		Project file
*.V		Verilog source file
*.vhd, *.vhdl	•	VHDL source file
*.mtcl	•	Constraints file
blastfpga.log	./ <proj_name>_Impl</proj_name>	Blast FPGA log file, all outputs
<proj_name>_bitmap.hex</proj_name>	./ <proj_name>_Impl/sbt/outputs/bitmap</proj_name>	Raw hexadecimal configuration image
<proj_name>_bitmap_int.hex</proj_name>	./ <proj_name>_Impl/sbt/outputs/bitmap</proj_name>	Intel-format hexadecimal configuration image


Try It Out in Silicon!

- Check jumper settings on board (see next slide)
- Connect USB cable to board and PC
- Insert jumper on JP13
- Turn on power
- Open a DOS box or command window
- Use ICEUTIL to program SPI PROM with configuration image
- Remove jumper JP13
- CDONE LED should light
- LEDs should respond to switches


Default Jumper Settings

Programming Setup

Be sure that jumper JP13 is installed to hold CRESET_B Low!

ICEUTIL Example

- Project creates two configuration images
 - led_wires_bitmap.hex : raw hex file format
 - □ led_wires_bitmap_int.hex: Intel hex file format
- Program M25P80 PROM with Raw Hex
 - d iceutil -d iCEman65 -m m25p80 -fh
 -w led_wires_bitmap.hex -v

- Program M25P80 PROM with Intel Hex
 - d iceutil -d iCEman65 -m m25p80 -fi
 -w led_wires_bitmap_int.hex -v
- Remember to remove JP13 when finished

Wrap Up

- So how did you do?
- What problems did you encounter?