
May 2008 1

Programmable Solutions for

Consumer Handheld

SiliconBlue Technologies
VHDL / Verilog Introduction

7-MAY-2008 (v1.0)

SiliconBlue
™

SiliconBlue Technologies
VHDL / Verilog Introduction

Agenda

May 2008 2

 VHDL / Verilog

 A Few Introductory Pointers

 A Quick Run through the System

What is VHDL and Verilog

 Popular entry method for FPGA / ASIC designs

 Verilog popular with ASIC engineers

 VHDL popular with FPGA designers

 Originally designed for simulation / verification

 Now used to create (synthesize) a design from

the description

 Just another programming language

 Verilog looks and feels like ‘C’

 VHDL looks and feels like Ada

 REPEAT: Just another programming language

May 2008 3

BE NOT AFRAID!

So What’s the Difference?

 Runs on a processor

 Processor performs

sequential operations

 Runs on a processor for

simulation purposes

 Designed to run in actual

hardware

 Hardware is inherently

parallel

May 2008 4

Traditional Programming Language VHDL / Verilog

Do this.
Then, do this.
Then do this.
Afterwards, do this.
Followed by this.

Do this.
While doing this.
And doing this.
Simultaneously doing this.
And this.

Traditional programming languages not designed to describe parallel operations

SiliconBlue’s Expectations

 You are not expected to be an expert VHDL /

Verilog coder

 But, be able to demonstrate the iCECUBE

design flow and iCEman65 board

 Requires a basic understanding of VHDL/Verilog

 Be able to recognize VHDL or Verilog when you

encounter it

May 2008 5

LED Wires Example

May 2008 6

C
7

C
5

E
5

E
6

T
1
3

V
1
4

R
1
3

0 1 0 1

LD6 LD5 LD4 LD3

SW3 SW2
BTN3

 Your job? Simple!

Build low-power

programmable wires

using the iCEman65

board

 Pick your language

 VHDL

 Verilog

 Implement it and

download it to the board
NOTE: Switches have
opposite polarity.

NOTE:

On Rev. B

board, connect

LED PMOD to

top-left PMOD

header (J12)

First Things First

 When writing a program, what things do you do

first?

 Declare any required libraries

 Declare variable names

 Declare the data type for each variable

 Then

 Define how variable values are assigned

 Knowing that VHDL and Verilog are just

another programming language, what should

we do?

May 2008 7

Verilog Example

May 2008 8

module led_wires (BTN3, SW, LD);
 // Declare inputs and outputs and their widths
 input BTN3;
 input [3:2] SW;
 output [6:3] LD;

 // Connect LEDs LD4 and LD3 directly to switches SW3 and SW2
 assign LD[4:3] = SW[3:2];

 // Connect pushbutton BTN3 directly to LD6
 assign LD[6] = BTN3;

 // Invert BTN3 and then connect it directly to LD5
 assign LD[5] = ~BTN3;

endmodule

VHDL Example

May 2008 9

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Declare inputs and outputs and their widths
entity led_wires is
 port (BTN3 : in STD_LOGIC;
 SW : in STD_LOGIC_VECTOR (3 downto 2);
 LD : out STD_LOGIC_VECTOR (6 downto 3)
);
end led_wires;

architecture Behavioral of led_wires is

begin

 -- Connect LEDs LD4 and LD3 directly to switches SW3 and SW2
 LD(4 downto 3) <= SW(3 downto 2) ;
 -- Connect pushbutton BTN3 directly to LD6
 LD(6) <= BTN3 ;
 -- Invert BTN3 and then connect it directly to LD5
 LD(5) <= not(BTN3) ;

end Behavioral ;

Start a New Project

May 2008 10

1

2

3

4
Create New Project

Enter Project Name, Location

Click Finish

Right-click, New Files  Verilog

Set Implementation Options

May 2008 11

1
Click Implementation Options button

2

3

4

Device tab

Set to iCE65
device on board

 65L04

 CB284

 L

Click OK

Create, Save Verilog File

May 2008 12

1

2

3

4

Write Verilog

Click Save

Specify File Name

Click OK

Check Verilog for Errors

May 2008 13

1 Click Drop-list

2 Click Run RTL

FPGA-7 RTL Analysis successful

3
Check for successful design
message in Output window.

If errors encountered, fix them then
restart from Step 1.

4
5

Click Drop-list

Click

Schematic

Viewer

6
Check that schematic
matches expected logic

Create Pin Assignment

May 2008 14

1

2

3

4

Click Constraints button

No clocks to define. Click Continue

Click Run Logic
Synthesis to
generate I/O pins

Click Pin
Assignment

Assign PIOs

May 2008 15

C
7

C
5

E
5

E
6

T
1
3

V
1
4

R
1
3

LD6 LD5 LD4 LD3

SW3 SW2
BTN3

1

Select PIO pin

2

3
Enter pin

location

Pin

Locations

Complete Design

May 2008 16

1

Enter constraints file name (*.mtcl)

2
Click OK

3 Run full
synthesis
flow

4
Check output file that expected
amount of logic was created

FPGA-24 FPGA Flow successful

5
Check for successful design
message in Output window.

View Final Results

May 2008 17

1
2

Click Drop-list

Click Schematic Viewer

3 Check that schematic matches expected logic

Important Files Created

May 2008 18

File Location Description

<proj_name>.prj . Project file

*.v . Verilog source file

*.vhd, *.vhdl . VHDL source file

*.mtcl . Constraints file

blastfpga.log ./<proj_name>_Impl Blast FPGA log file, all

outputs

<proj_name>_bitmap.hex ./<proj_name>_Impl/sbt/outputs/bitmap Raw hexadecimal

configuration image

<proj_name>_bitmap_int.hex ./<proj_name>_Impl/sbt/outputs/bitmap Intel-format

hexadecimal

configuration image

Try It Out in Silicon!

 Check jumper settings on board (see next slide)

 Connect USB cable to board and PC

 Insert jumper on JP13

 Turn on power

 Open a DOS box or command window

 Use ICEUTIL to program SPI PROM with

configuration image

 Remove jumper JP13

 CDONE LED should light

 LEDs should respond to switches
May 2008 19

Default Jumper Settings

May 2008 20

Programming Setup

 Be sure that jumper JP13 is installed to hold

CRESET_B Low!
May 2008 21

Connect
Mini-USB Cable

Install CRESET_B
Jumper (JP13)

Turn on power

Select SPI PROM (J9)

‘25’ = M25P80

Set SPI Bank Voltage
Install VCCSPI (JP8)
Set J10 to 3V3

‘45’ = AT45DB081
(not available on
all boards)

Holds iCE65 SPI
pins in Hi-Z

J9
‘25’

‘45’

SLAVE

J10

S
P
I

V
O

L
T
A
G

E

JP8 VCCSPI

3V3

2V5

1V8

Set USB Programming
Jumper (JP11) to SPI

Set I/O Bank 2 to 3.3V
(JP21, J44)

J44

VCCIO_2
JP21

3V3

2V5

1V8

JP11

SPI

PROG

Set SPI Data Swappers
JP6

JP7

Install CDONE
Jumper (JP14) to

Enable CDONE LED
CDONE

JP14
LD2

ICEUTIL Example

 Project creates two configuration images

 led_wires_bitmap.hex : raw hex file format

 led_wires_bitmap_int.hex: Intel hex file format

 Program M25P80 PROM with Raw Hex
 iceutil -d iCEman65 -m m25p80 -fh
-w led_wires_bitmap.hex -v

 Program M25P80 PROM with Intel Hex
 iceutil -d iCEman65 -m m25p80 -fi
-w led_wires_bitmap_int.hex –v

 Remember to remove JP13 when finished

 CDONE LED should light

 May 2008 22

OR

Wrap Up

 So how did you do?

 What problems did you encounter?

May 2008 23

