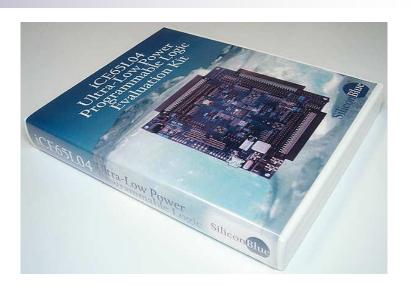
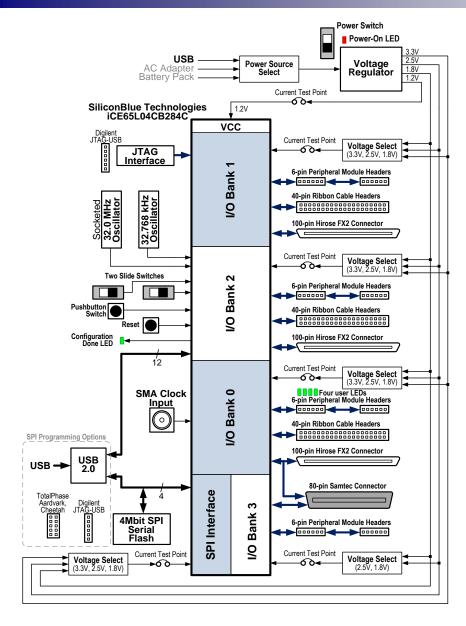


Agenda


- iCEman65 Kit
- Programming Options
- More Information

What's in the Box?


- iCEman65 board
- LED peripheral module
- 32.0 MHz oscillator can
- USB cable
- Two-pin power cable (for power measurements)
- Quick Start guide



/O Bank 1

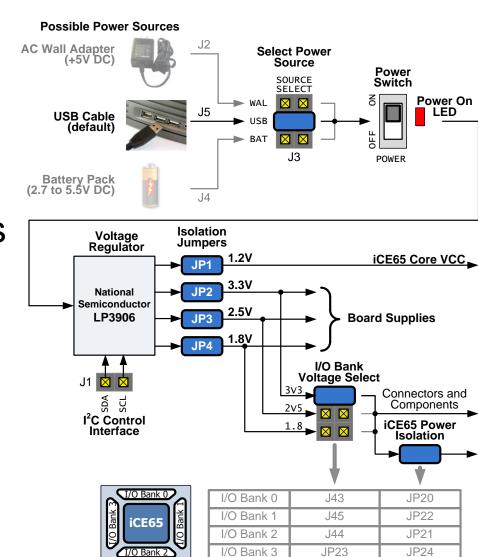
iCEman65 Block Diagram

I/O Bank 0

I/O Bank 2

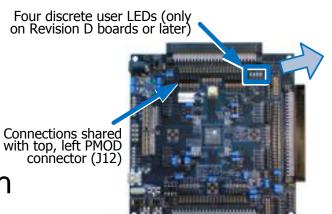
February 2008 4

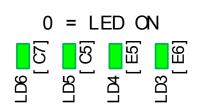
Design Philosophy

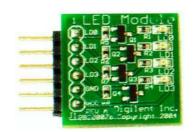


- Deliver the Boards NOW!!!
- Plentiful I/O: iCE65 Competitive Advantage
 - Expansion connectors and boards
 - Leverage off-the-shelf solutions where possible
- Flexible I/O Voltages: iCE65 Competitive Advantage
 - Separate voltages for each I/O bank supply
- Power Measurements: iCE65 Competitive Advantage
 - Jumpers for easy measurements
 - □ Each I/O bank, core isolated into power islands
- Programming Options
 - Onboard USB + third party options
- Options
 - Multiple power supply options
 - □ Board supports iCE65L02 through iCE65L16 in CB132, CB284 packages
 - CB284 socket (for testing on-board NVCM programming)

Power Options


- Powered by USB by default
 - Also programming interface
- Optional power sources
 - □ AC adapter
 - Battery pack
- Each I/O bank has ...
 - Independent voltage control
 - Isolation jumper



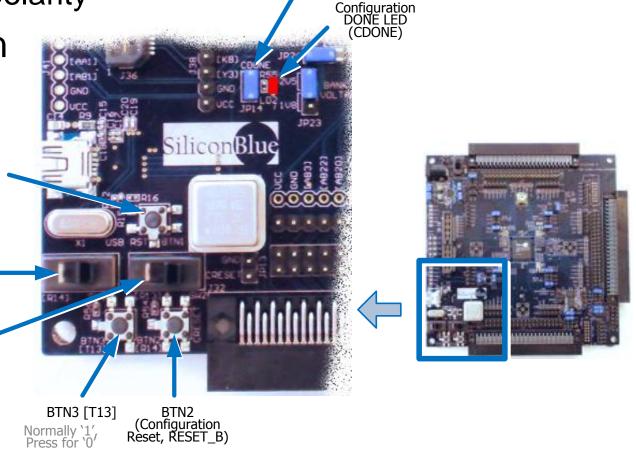

LEDs

- Four general-purpose LEDs on the board
 - □ Not on Rev. B boards
 - □ Drive Low to light LED
 - Connections shared with upper-left PMOD socket
 - Pin numbers marked on board (Example "[C7]")
- LED Peripheral Module
 - Included with kit
 - Plugs into any PMOD socket
 - Works at 1.8V to 3.3V

Switches

- CRESET_B pushbutton
- Two user slide switches

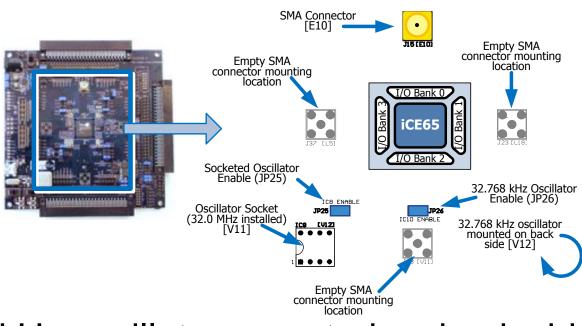
Note reversed polarity


BTN1 (Reset USB)

NOTE: Reverse polarity SW3 [V14]

User pushbutton

■ Normally '1'


□ Push for '0'

CDONE Jumper (JP14)

Clock Sources

- 32.768 kHz oscillator mounted on back side
- 32.0 MHz oscillator can shipped with board
 - Mount in 8-pin DIP socket
 - Can change to any half-size oscillator
- SMA Connector to drive from external clock source

Also available as an output

Expansion Connectors

- 100-pin Hirose FX2 Connectors
 - □ Banks 0, 1, and 2
 - Digilent FX2 boards
- 40-pin Ribbon Cable Connectors
 - □ Banks 0, 1, and 2
 - TerASIC camera and LCD panel
- 6-pin Peripheral Module (PMOD) Connectors
 - □ Eight total, two per I/O bank
 - Digilent PMOD modules
- 80-pin Samtec High-speed Connector
 - Bank 3 only

Hirose FX2 Ribbon Cable 2 x PMOD

Samtec

2 x PMOD

Hirose FX2 Ribbon Cable 2 x PMOD

Hirose FX2 Ribbon Cable 2 x PMOD

Hirose FX2 Expansion Boards Silicon Blue

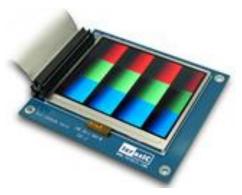
Breadboard Prototyping

Wirewrap Prototyping

Video Decoder Board

www.digilentinc.com/Products/Catalog.cfm?Nav1=Products&Nav2=Accessory&Cat=Accessory

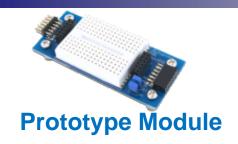
NOTE: Port Enhancement demo board plugs in to an FX2 connector.



40-Pin Ribbon Cable Boards

1.3MPixel CMOS Imager/Camera

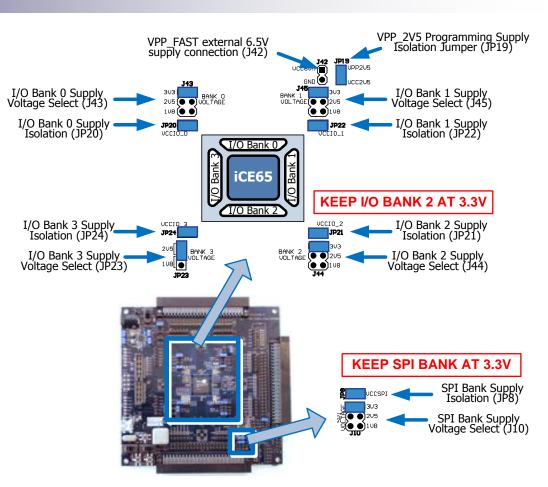
3.6-inch 320 x 240 Color Display


4.3-inch High-Resolution 800 x480 Color Display

www.terasic.com.tw

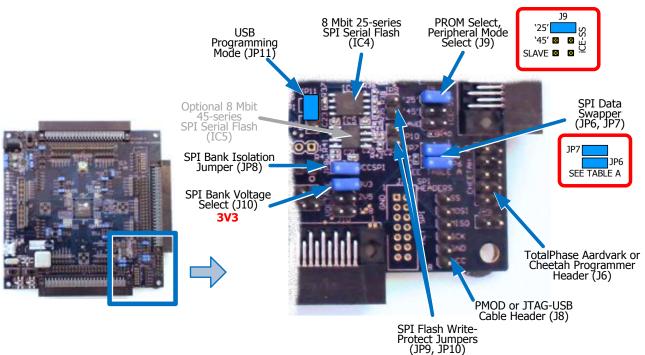
Peripheral Modules (PMOD)

- 6-pin connector
 - 4 signals
 - Power, Ground
- Easy interfaces
 - Analog
 - Interface
 - Memory
 - Display
 - Motor control



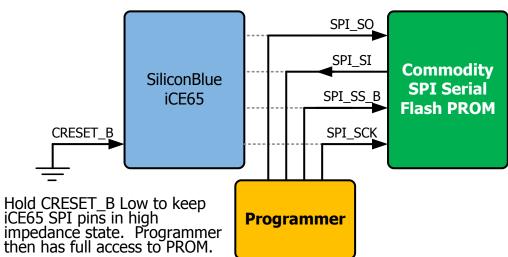
www.digilentinc.com/Products/Catalog.cfm?Nav1=Products&Nav2=Peripheral&Cat=Peripheral

I/O Bank Voltage Control



- Each I/O Bank has selectable input voltage
- Banks 0, 1, 2
 - 3.3V, 2.5V, 1.8V
 - Keep I/O Bank 2 at 3.3V unless you read the manual
- Bank 3
 - 2.5V or 1.8V
- SPI Mini Bank
 - 3.3V, 2.5V, 1.8V
 - Keep at 3.3V unless you read the manual

SPI Programming



- Numonyx/ST Micro M25P80 8Mbit, commodity SPI serial Flash PROM
 - □ Some boards also have Atmel AT45DB081D 8Mbit PROM (not default build)
- Programming support via onboard USB, TotalPhase box, or Digilent cable
- Set jumpers as required (including CRESET_B jumper)

Programming SPI Flash

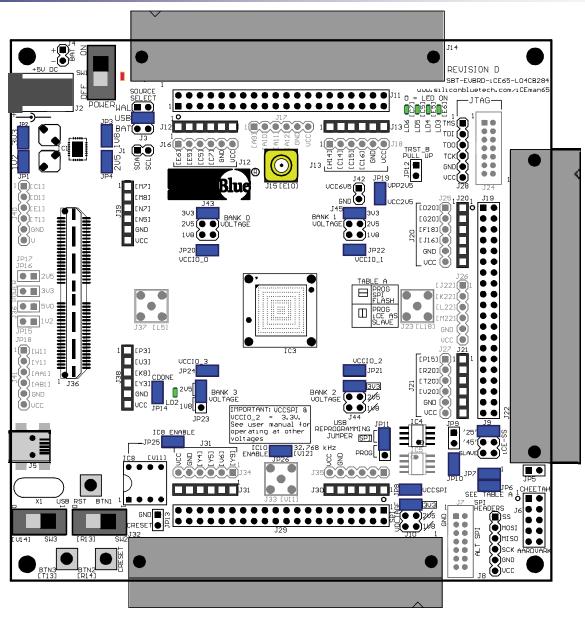
- Hold CRESET_B Low
 - Tri-states all pins
 - Allows external programmer access to SPI Flash
- Built into iCEman65 board
- TotalPhase
 - Aardvark (lower-speed)
 www.totalphase.com/products/aardvark_i2cspi
 - Cheetah (high-speed)www.totalphase.com/products/cheetah_spi
 - □ Free Flash Center software <u>www.totalphase.com/products/flash_center</u>
- Digilent
 - □ JTAG-USB Cable www.digilentinc.com/Products/Detail.cfm?Prod=JTAG-USB&Nav1=Products&Nav2=Cables
 - Works with Adept/ICEUTIL

On-board USB Programmer

Programming Software

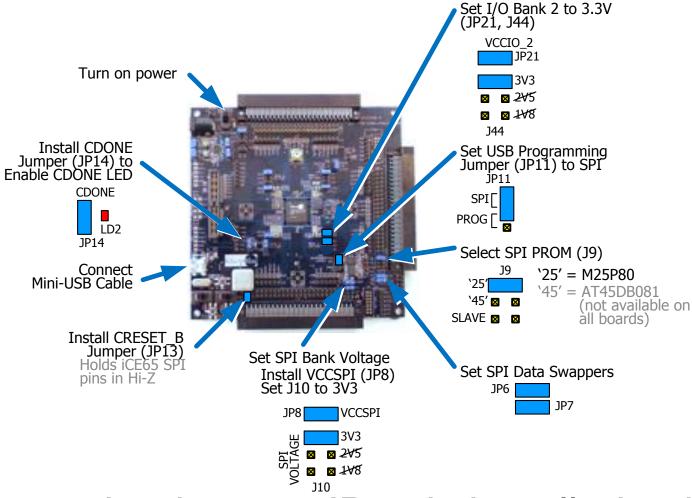
- Adept
 - USB device drivers
 - Available for download from iCEman65 web site www.siliconbluetech.com/iCEman65/downloads/Adept.msi

□ ICEUTIL


- Command-line driven
- Available for download from iCEman65 web site www.siliconbluetech.com/iCEman65/downloads/iceutil.exe

Installation Guide

 Available for download from iCEman65 web site <u>www.siliconbluetech.com/iCEman65/AdeptICEUTILInstallation.pdf</u>


Default Jumper Settings

Programming Setup

Be sure that jumper JP13 is installed to hold CRESET_B Low!

ICEUTIL Quick Reference

Open DOS box, command window

iceutil [opt1] [otp2] [...]

```
Options:
 -d <devname> specify name of SPI interface device to use
 -m <memtype> specify target device type
 -w <filename> write device with contents of specified file
 -r <filename> write specified file with contents read from flash
               print the id code from the flash device
 -id
               verify device contents after write
 -V
 -a <address>
               specify starting address to write/read
               specify number of bytes to read
 -l <length>
               erase the flash memory device
 -E
               don't perform any erase before write
 -NE
 -fb
               read/write files in binary format
 -fi
               read/write files in Intel hex format
 -fh
               read/write files in raw hex format
 -s <freq>
               set SPI clock speed
```

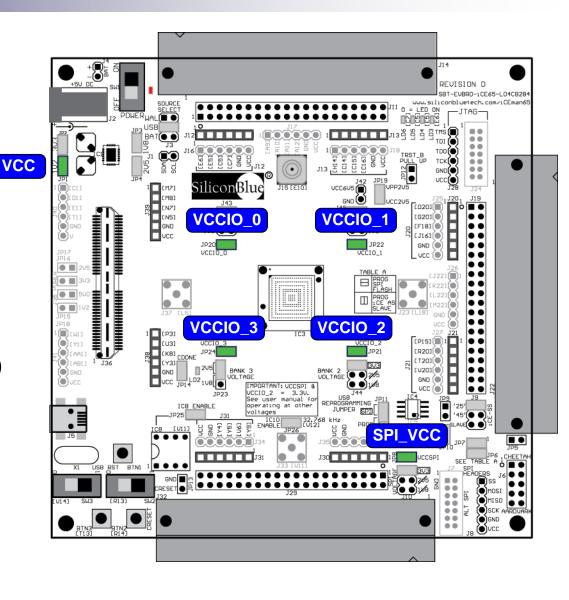
ICEUTIL Example

- Project creates two possible configuration images
 - project_name>_bitmap.hex : raw hex file
 - project_name>_bitmap_int.hex: Intel hex file
- Program M25P80 PROM with Raw Hex Target iCEman65

```
d iceutil (-d iCEman65) -m m25p80 (-fh) board
-w project_name>_bitmap.hex -v Specify hex format
```

- Program M25P80 PROM with Intel Hex

Default Design



- Design pre-programmed on boards
- Shift registers toggle the LEDs in one direction
- I/O Banks 0, 1 controlled by 32.768 kHz oscillator on back of board
- I/O Banks 2, 3 controlled by 32.0 MHz socketed oscillator
- Slide switches SW2 and SW3 control the shift direction
- Pushbutton BTN3 resets the internal shift registers
- Pushbutton BTN2 reloads the configuration image

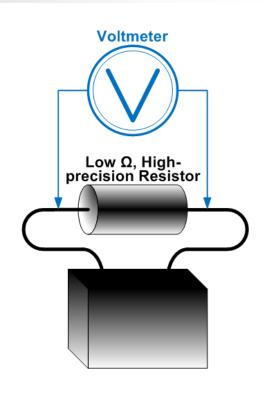
Measuring Power

- Each iCE65 voltage rail has an isolation jumper
 - □ VCC core
 - □ All four I/O banks
 - □ SPI mini bank
- Remove jumper to measure current

February 2008 23

Techniques (1)

- Quick and Easy: Multimeter
 - Use a high-accuracy multimeter
 - Connect meter to jumper using included cable
 - Set meter to largest current setting (A, 100 mA)
 (can possibly damage meter if set too low)
 - □ Re-adjust to relevant range (mA, µA)
 - Too low of a setting results in too large a voltage drop across jumper
 - Potentially violates minimum voltage spec. for part
 - Possibly use a second voltage meter to measure voltage drop across first meter/jumper connection


Power = Current ● Voltage

Techniques (2)

- More Accurate:
 - Low Ω, high-precision (1%) resistor across jumper
 - Measure voltage drop across resistor
 - Better approach for measuring current draw over time
 - □ Resistor value is key
 - Too high: too large of a voltage drop
 - Too low: too small to measure

Power =
$$\frac{\text{(Voltage)}^2}{\text{Resistor Value}}$$

More Information

- iCEman65 Evaluation Kit page www.siliconbluetech.com/iCEman65
- iCEman65 User Guide

 www.siliconbluetech.com/iCEman65/iCEmanBoardUserGuide.pdf

 Frequent updates at the moment
- Adept/ICEUTIL Software and Installation Guide
- Schematics
- PC Board Layout Files (Gerbers)
- Reference designs (coming soon)