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Introduction 
As the telecommunications market has grown, so has 
the number of various systems and protocols. Linking 
the different telecommunication systems together is a 
high value-added function. Usually, these various 
systems have different data transmission rates Which 
require interfacing two asynchronous systems together. 
Designers need to buffer data between two systems 
running at different speeds. 

First-In, First-Out memories (FIFOs), or other forms of 
shared memory, offer an easy solution to the data 
buffering problem. FIFOs automatically solve the timing 
problems associated with interfacing two asynchronous 
systems. 

This paper demonstrates various applications of FIFOs 
and shared memories using programmable logic in real­
world telecommunication applications. Some designs 
require only small buffers, a few bytes deeps. Others 
require deeper FIFOs, often 32 or more bytes deep. In 
some cases, systems require much larger FIFOs�ften 
more than 64K bytes deep. And finally some systems 
require fully shared memories with multiple, 
simultaneous read and write ports. 

The two types of programmable logic architectures used 
in these applications include Field Programmable Gate 
Arrays (FPGAs) and Erasable Programmable Logic 
Devices (EPLDs). While either architecture can 
implement most any function, the FPGAs are better at 
register- and IIO-intensive applications. EPLDs are 
better suited to complex control functions and high­
speed state machines. 

The FIFO and shared memory applications demon­
strated include: 

• Small, Register-Based General-Purpose FIFO 
(pages 3 through 7) 

This application describes a small 8x8 FIFO used to 
synchronize two systems with roughly similar data 
transmission rates. The design demonstrates how 
to build a small FIFO using a Xilinx XC3000A or 
XC3100 FPGA device. The maximum clock 
frequency for the FIFO is 42 Mhz when built in an 
XC31 00-3 device which is fast enough for CEPT E3 
protocol applications. 

• Larger, High-Speed FIFO Using On-Chlp RAM 
(pages Sthrough 12) 
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Larger FIFOs, up to 64 or more bytes deep, fit into 
the Xilinx XC4000 family FPGAs. The XC4000 
family FPGAs contain on-ehip RAM making FIFOs 
very efficient. This appliC4tion shows a high-speed 
version of a FIFO used in video-conferencing 
applications. The example design is only 16-bytes 
deep. However, the techniques shown here can be 
expanded to deeper and wider FIFOs. 

• Very Large FIFO Using DRAM 
(pages 14 through 16) 
Some applications, with widely different transmis­
sion rates, require much larger FIFOs. Usually, 
these FIFOs are too large to fit into a single pro­
grammable logic device. 

However, building a 1Mx1 or 128Kx8 FIFO is easy 
using a Xilinx XC3020A and a 1 Mbit DRAM 
memory. The FPGA contains the FIFO controller 
circuitry while the DRAM becomes the FIFO 
memory. Even larger FIFOs are possible using· 
larger DRAMs. 

• Four-Port Shared Memory Controller 
(pages 17 through 19) 
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Some applications require simultaneous memory 
access from different read and write ports. This is a 
common function in local area network (LAN) 
bridges where various protocols are connected 
together. 

The controller must arbitrate between the various, 
simultaneous requests to determine which protocol 
actually accesses the memory at any one time. The 
arbitration state machine logic can be quite 
complex, requiring a device capable of handling 
such complexity. 

This design uses a Xilinx XC7200A EPLD which 
supports up to 17 product terms per macrocell and 
offers predictable 60 Mhz performance with 100% 
routing and utilization. 
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Why Use Programmable Logic? 

Many very high volume telecommunication applications 
require very low-cost logic. These are generally long­
established functions like telephone handsets, etc. 
Chip-sets are usually available for these applications, or 
the volumes are high enough to justify an ASIC solution. 

However, many high-value applications are in new and 
emerging telecommunications markets. These functions 
are generally require flexibility as standards emerge. 
For example, the interface between the existing 
telephone infrastructure and new carriers like SDH and 
new networking structures like Asynchronous Transfer 
Mode (ATM) require adaptability as standards change 
and sOlidify. 

The benefits of programmable logic in tele­
communications applications include: 

• High density logic. Up to 25,000 gates on a single 
programmable device. 

• Plenty of flip-flops for. building data registers, shift 
registers, FIFOs, state machines, and counters. 
One programmable logic device may contain 
thousands of flip-flops. 

• High speed logic. Today's programmable logic 
can operate at over 150 Mhz for some functions. 
Most telecommunications applications, including 
high-speed functions like SONET and SDH, can 
now use programmable logic. 

• Easy modifications. Make design changes without 
incurring additional cost. There are not any Non­
Recurring Engineering (NRE) charges as there are 
with ASICs. This reduces the development costs for 
a project. 

• Faster product development. Make mod-
ifications quickly, in only a few minutes to hours. 
Even field hardware updates are possible with 
reprogrammable logiC devices. 

• Highly reliable. The high level of testability gives 
programmable logic extremely high device reliability. 
This is especially true for reprogrammable devices 
like SRAM-based FPGAs. 

• Low power operation. FPGAs offer low operating 
power-down to 1 O�A in standby mode. EPLDs are 
much lower power than the PAL ®s that they 
replace. 

Conclusions 

Interfacing different telecommunications systems to­
gether is a high value-added portion of the market. 
Such systems require FIFOs and shared memories to 
resolve asynchronous timing problems. Programmable 
logic provides simple and reliable solutions for building 
FIFO circuits. In addition, programmable logiC offers 
high-density, cost-effective, flexible solutions for many 
telecommunications applications. 

Designs on Demand 

All four applications are available on diskette as 
completed designs. Most of the designs are drawn 
using the VIEWlogic® VIEWdraw<l!l schematic editor. 
PLUSASMTM equation files are available for the multi­
port shared memory controller built using an EPLD. 

Please contact your local Xilinx representative for a 
copy or contact the Xilinx Asia Pacific office at: 

Xilinx Asia Pacific 
Unit 2308-2319, Tower 1 
Metroplaza 
Hing Fong Road 
Kwai Fong, N.T. 
HONG KONG 

852-410-2717 (phone) 
852-418-1600 (FAX) 
hongkong@xilinx.com (Internet) 

VIEWlogiC® VI EWdraw® are registered trademarks of VI EWlogic Systems, Inc" 
PAL ® is a registered trademark of Advanced Micro Devices. 
Xilinx® is a registered trademark and PLUSASM is a trademark of Xilinx, Inc. 

Copyright © 1993-1994 by Xilinx, Inc. All rights reserved. 
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Register-Based FIFO 

XAPP 005.002 i5 Application Note By BERNIE NEW AND WOLFGANG HOFLICH 

Summary 
While XC3000-series lCA devices do not provide RAM, it is possible to construct small register-based FIFOs. 
A basic synchronous FIFO requires one ClB for each two bits of FIFO capacity, plus one ClB for each word 
in the FIFO. Optional asynchronous input and output circuits are provided. Design files are available for 
two implementations of this design. The fastest of the two implementations uses a constraints file to achieve 
better placement. 

Specff/catlons 
Size 
Maximum Clock Frequency XC31 00-3 
Number of ClBs 

Introduction 

a x a Bits 
42 MHz 
40 

In the absence of RAM, XC3000 FIFOs must be con­
structed with registers. Using both flip-flops, one ClB is 
required for each two bits of FIFO capacity. For a syn­
chronous FIFO, an additional one ClB per word is 
required for control. Thus an a-word by a-bit FIFO can 
be implemented in 40 ClBs. Speed is a function of 
depth, with an a-word FIFO able to achieve speeds of up 
to 42 MHz. 

Asynchronous inputs and.outputs may be added if 
desired. Each of these adds nl2 elBs for an n-bit wide 
FIFO, plus a few additional ClBs for control logic. Typi­
cally, asynchronous inputs and outputs operate more 
slowly because of the handshake required for synchroni­
zation. Where burst input or output speed is required for 
data transfer, the FIFO should be operated in synchro­
nism with the high-speed port. 

The basic designs shown use simple flags that permit 
the input and output of single words. For block transfers, 
flags could be generated for signaling the availability of a 
block of data or space for a block of data. 

Synchronous FIFOs 

The basic FIFO design, shown in Figure 1, comprises a 
broadside shift register; each word has a separate shift 
enable. A control flip-flop, associated with each word, 
contains a valid flag that is shifted with the data. The 
shift-control logic uses these valid flags to generate shift 
enables and control the flow of data through the FIFO. 

Whenever a register does not contain valid data, shift is 
enabled for that register, and for all the registers up­
stream from it. This causes data to continuously shift 
through the FIFO, with valid words backing-up at the 
output. They remain there until a POP command 
enables the shift in all the registers in the FIFO. Invalid 
data is not retained. 

� Supporting design files are available on the XUinx 3 

XI/lnx Family 
XC3000IXC3100 

Figure 2 shows the detail of the FIFO. For simplicity, only 
two data bits are shown (the top two rows of flip-flops); 
all other data bits are identical. The bottom row of flip­
flops contains the valid bits. The shift control logic is the 
chain of OR gates; a column of flip-flops is enabled if its 
valid bit, or any valid bit to the right, is not asserted. 

The POP command acts like an additional active-low 
valid bit, which is to the right of all the columns in the 
FIFO. When it is High, all the registers shift. If the sec:': 
ond to last register contains valid data, this is shifted into 
the last register, and the VALID flag remains High. Oth­
erwise, invalid data is shifted into the last register,and 
the VALID flag goes Low. The last register continues 
shifting until it receives valid data, when the VALID flag 
goes High. 

Data can only be written into the FIFO if the first register 
contains invalid data or valid data that is about �o be 
shifted out. This condition is signaled by the ROY flag, 
that is also the shift enable for the first register. Conse� 

°7 °7 

06 °6 
Os °5 
°4 SHIFT 

°4 
°3 REGISTER °3 
°2 

°2 

°1 °1 

Do 00 
PUSH VALID 

ROY POP 
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Figure 1. 8-Worcl x 8-Bit Synchronous FIFO (40 elBs) 
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Figure 2. Detail o f  Synchronous FIFO 

quently, data is alwayS being shifted in when the FIFO is 
ready. The function of PUSH is simply to identify the data 
being shifted in as valid, so that it is retained in the FIFO. 

I n  the diagram, the CLB clock enable (CE) is used as shift 
enable. When combining pairs of flip-flops into CLBs, CE 
can only be used if adjacent bits of  the same register are 
combined. If it· is more convenient, bits of equal weight 
from adjacent registers may be combined. In this case, 
function generators must be used to implement shift 
enable. This entails a simple 2-input multiplexer that 
selects input data when shift is enabled , and selects 
existing data from the flip-flop when it is not enabled. 

The speed of the FIFO is determined by the ripple-OR 
time of the shift-control logic, and the distribution and set­
up times of the shift-enable signals. This defines the set­
up time for the POP command. The settl ing time for the 
shift-control logic is one CLB delay per two words of FIFO 
depth. Longl ines should be used to distribute the shift­
enable signals. 

Asynchronous Input Stage 

Asynchronous data may be entered into the FIFO using 
the circuit shown in Figure 3. An additional input holding 
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register is provided to facil itate edge-triggered input. if 
appropriate, this can be implemented in lOB registers . 

Data may only be entered when the ROY flag signals that 
the input register is available to accept it. The input clock 
(PUSH) also asserts the PUSH INP signal which removes 
the ROY flag. On the next internal clock, PUSH INT is 
asserted and PUSH I NP cleared. When shift is enabled 
into the first register of the FIFO, data is transferred out of 
the holding register, PUSH INT is cleared and ROY is re­
asserted. 

If data is being i nput from a synchronous system that is 
not synchronized to the FIFO internal clock, the circuit 
shown in Figure 4 should be used. Again, an input holding 
register is provided. However, it is enabled by PUSH, 
instead of being clocked by it (an lOB register cannot be 
used). As before, PUSH causes PUSH INP to be 
asserted. Feedback around the flip-flop sustains PUSH 
INP until it is recognized by the internal clock, permitting 
the PUSH command to be removed after the one input 
clock. 

The entry of data into the FIFO proceeds as in the previ­
ous scheme. ROY is registered to synchron ize it to the 
input clock. The negative clock edge is used for this, so 
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that, if the FIFO is sufficiently fast and is not full, the ROY 
flag will remain set, and data can be entered on succes­
sive input clocks. If the positive clock edge had been 
used, ROY would always be Low for at least one clock. At 
best, this would only permit data to be entered on alter­
nate input clocks, no matter how slow. 

Asynchronous Output Stage 

The circuit shown in Figure 5 should be used, if an asyn­
chronous output is required. For an immediate, edge-trig­
gered output, a holding register is provided, which is 
clocked by the output clock (POP). lOB flip-flops may be 
used for this register. 

The output register may only be clocked when the ROY 
flag signals that data is available in the last register of the 
FIFO. The output clock causes data to be transferred out 
of the FIFO, and asserts POP OUT. This removes the 
RDY flag. On the next internal clock, POP INT is asserted 
and POP OUT is.cleared. POP INT is held, and the FIFO 
shifts, until the last register again contains valid data. It is 
then cleared, anq the ROY flag is re-asserted. 

If data is being output to a synchronous system that is not 
synchronized to the FIFO internal clock, the circuit shown 
in Figure 6 should be used. The output register, which 
cannot be implemented in lOBs, is enabled by POP. POP 
also causes POP OUT to be asserted. Feedback around 
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the register sustains POP OUT until it is recognized by 
the internal clock, even if POP is removed and another 
output clock occurs. 

The transfer of data out of the FIFO proceeds as in the 
previous scheme. ROY is synchronized with the negative 
edge of the output clock. As a result, data can be output 
on successive clocks if the FIFO is fast enough and data 
is available. 

Implementation Notes 

The obvious organization for the FIFO is as a rectangular 
array of CLBs, with the control logic in the bottom row. 
The flip-flops may be partitioned into CLBs in two ways. If 
adjacent bits of the same word are combined, the result is 
a FIFO that is twice as wide as it is tall (assuming equal 
numbers of bits and words). 

Alternatively, two bits of equal rank from adjacent words 
may be combined. This gives a FIFO that is twice as tall 
as it is wide and is potentially faster. The critical path 
through the control logic passes through a chain of half as 
many gates as there are words. The tall, narrow organiza­
tion allows these gates to be implemented in adjacent 
CLBs with zero-delay direct interconnects. 

Both forms of the FIFO are available as macros, using 
CLBMAPs. 
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Summary 

High-Performance 
RAM-Based FIFO 

Application Note By BERNIE NEW 

Two FIFO designs are. described. In both cases, arbitration permits any RAM cycle to be a PUSH or a POP. 
XC4000 RAM performance is improved through read-modify-write operation, and the fastest clock required is at 
the RAM-cycle rate. The first design is expandable to any size FIFO, while the second, faster design is 
restricted to 16 or 32 words. 

Specifications 

Maximum Clock Frequency (estimated for XC4000-5) 

16 x 8-bit FIFO 40 MHz 

Introduction 

T he four components of a RAM-based FIFO are shown in 
Figure 1. To control the RAM, the address-logic block 
maintains two addresses, one for the current write loca­
tion, where data is PUSHed, and one for the current read 
location, from which data is POPped. Following a PUSH 
or a POP, the corresponding address is incremented, 
causing data to be written and read sequentially. 

The flag logic uses the read and write addresses to deter­
mine the status of the memory. If the memory contains no 
valid data, an EMPTY flag is created; a FULL flag is cre­
ated when all memory locations are occupied. 

Data 
Input 

PUSH! 
POP 

ACKI 
ROY 

-

-

DIN 

f---

Arbiter 
Logic 

-

t--

Figure 1. FIFO Block DIagram 
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RAM Operation 

The arbitration logic, for the most part, simply passes 
PUSH and POP requests to the RAM. Simultaneous 
PUSH and POP requests, however, must be resolved. 
The simplest schemes have a fixed priority, with either 
PUSH or POP being designated as the priority operation. 
If the priority operation is not possible because the RAM 
is full or empty, the priority should be overridden. Other 
schemes can alternate in priority between PUSH and 
POP; or favor one operation while its request persists . 

Both FIFOs described depend on read-modify-write oper­
ation of the RAM, with Write Enable asserted every cycle. 
In the first design, a data multiplexer permits "non-write" 
cycles by rewriting existing data into the RAM. The same 
multiplexer provides bank selection for RAM expansion, 
permitting any size FIFO. 

In the second design, the data multiplexer is omitted for 
faster operation. As a consequence, however, bank 
selection is not possible, and the RAM depth is limited to 
one CLB. Without a data multiplexer, only new data can 
be written in the RAM. During non-POP cycles, new data 
is always written to the current write address. If PUSH is 
asserted, the data is valid and the write address is incre­
mented before the next write. If PUSH is not asserted, the 
address is not incremented, and the invalid data is subse­
quently overwritten. During a POP cycle, data read from 
the RAM is stored in a register, and the RAM location 
immediately overwritten with invalid data. 

Operating Description 

Expandable FIFO 
Figure 2 shows the RAM and its address counters. A key 
element is the use of a BUFGS to drive the RAM Write 
Enable and clock the address register. The low skew of 
the global net ensures that the data and address hold 
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times are met. The RAM is written every clock cycle, and 
the multiplexer preceding the RAM determines whether 
new data is entered or the old 'data is re-entered. If it is 
necessary to expand the RAM, a bank select signal, 
derived from the address counter, can be ANOed with the 
Active signal to limit writing to a single bank of RAM. In 
addition, a read-data-select multiplexer must be provided. 

The address-generation logic is shown in the lower por­
tion of Figure 2. The right-hand register contains the 
address currently being used by the RAM, the write 
address during a PUSH and the read address during a 
POP. The left-hand register contains the address that is 
not being used. 

The address-logic instruction set, Table 1, permits the 
active address to be incremented and remain active for 
successive PUSHes or POP s, or be incremented and 
become inactive, for a PUSH followed by a POP, or vice 
versa. It also permits the addresses to remain unchanged 
or simply interchanged. 

.B..U..b and EMPTY flags are generated in the flag logic, 
Figure 3. Rags can only be asserted or de-asserted dur­
ing active PUSH or POP cycles, and both are triggered by 
the incremented active RAM address becoming equal to 
the inactive address. If this equality occurs during a PUSH 
cycle, the new write address contains the next data to be 
POP ed, and the FIFO is full. If equality is reached during a 
POP, the FIFO is empty since the new read address is 
waiting to be written in the next PUSH operation. 
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Table 1. Address logic Instruction Set 

CurrentOp NextOp AC 
RIW ActJInact RIW 1234 

R Active R 1 01 1 

R Inactive R XOXO 

W Active R 1 101 

W Inactive R 0101 

R Active W 1101 

R Inactive W 0101 

W Active W 1 01 1 

W Inactive W XOXO 

X3464 

Consequently, the flags can be generated by gating the 
comparator output with the Write signal and registering it 
during active RAM cycles. The address-logic instruction 
set is constructed such that the inactive address and the 
incremented active address are always available to the 
comparator. The flags clear on the next active RAM cycle, 
when the addresses become non-equal. For correct oper­
ation, this cycle must be a PUSH if the FIFO is empty or a 

POP if it is full. 

Figure 4 shows a simple arbitration circuit. The PUSH and 
POP inputs control a multiplexer that determines the oper­
ation in the next RAM cycle. If PUSH only is asserted, the 
next cycle is a write. If POP only is asserted, it is a read 
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Figure 3. Flag Logic 
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cycle. If both are asserted together, the next operation in 
the next RAM cycle is determined by a user-defined Pri­
ority signal. Several options for the Priority signal are dis­
cussed later. 

If a PUSH or a POP is requested and the FIFO is not full 
or empty, respectively, the next cycle is declared Active. A 
write or a read occurs and the corresponding address is 
incremented. Otherwise, the cycle is inactive; no read or 
write occurs and the addresses remain unchanged. In an 
inactive cycle, the Write signal is de-asserted by default. 

Two handshake signals are generated. ACK acknowl­
edges that a PUSH request will be honored in the next 
RAM cycle. Input data is captured on the falling clock 
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edge that starts the RAM cycle. ROY indicates that a POP 
request will be honored during the next RAM cycle. Out­
put data is made available on the falling clock edge that 
ends the RAM cycle. 

In deciding the next operation when both PUSH and POP 
are asserted, the most straightforward Priority functions 
simply default to one operation or the other. To always 
write, a logic High could be used, and to always read, a 
logic Low. In practice, however, this can lead to. wasted _ 
cycle. For example, PUSH could win when the FIFO is full 
and the operation cannot be performed. A better choice is 
to use B.l.!J. as Priority to always select write unless the 
FIFO is full. Similarly, using EMPTY will cause POP to 
always win unless the FIFO is empty. 

r-------------------�ACK 
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Figure 4. PUSH/POP Arbitration Logic 
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The above priorities are useful when receiving data from a 
burst source, such as a bus, or transmitting burst data. 
While burst is in progress, however, the other operation 
can be locked out for many cycles. If a more even 
resource allocation is required, Write can be used as Pri­
ority. In this case, requesting PUSH and POP continu­
ously results in alternating reads and writes. 

While the time to acquire the FIFO is reduced to no more 
than one cycle, the guaranteed peak PUSHI POP rate is 
also reduced. In the limit, PUSH and POP may only oper­
ate at half the RAM cycle rate. The average data through 
the FIFO is unaffected, however. In the long term, it is 
obvious that no more than half the RAM cycles can be 
PUSHes. Attempting to achieve more will fail when the 
FIFO becomes full. Similarly, no more than half the cycles 
can be POPs, since the FIFO will become empty. 

A third option permits both burst reads and burst writes, 
although either PUSH or POP may experience a long 
delay acquiring the FIFO if it is busy. Priority is connected 
to Write. As a result, the FIFO repeats its last operation 
whenever there is a conflict. A burst read or write will con­
tinue, and lock out the other operation until the burst is 
complete. 

High-Performance FIFO 
The RAM block for the high-performance FIFO is shown in 
Figure 5. In this deSign, the RAM has simple input and 
output registers. The input register captures data on the 
falling edge of the clock which, in addition, marks the start 
of a RAM cycle. Data is captured in the output register at 
the end of the read phase, when the clock goes high. 
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Prior to the start of the RAM cycle, a selection is made 
between the read and write addresses, and the selected 
address is registered when the RAM cycle starts. The 
read address is only selected when. a POP is to be exe­
cuted. Stable output data is retained from POP to POP, 
however, since the output �egister is only enabled during 
POPs. If the output data is required to change on the fall­
ing edge, an additional register must be used. 

Since new data is written into the RAM every qycle, the 
read address cannot be selected during idle cycles; valid 
data waiting to be read would be destroyed by the write. 
Consequently, the write address is selected for both 
PUSH and idle cycles . 

In the previous design, the RAM can be filled completely. 
When the FIFO is full, the next write address becomes 
equal to the next read address. This is not a problem, pro­
vided the location is read before it is overwritten. In the 
current design, there must always remain .at least 'one 
unused location where invalid data is written during idle 
cycles. 

When a PUSH occurs, the data written finally becomes 
valid, and the write address is incremented. During sub­
sequent idle cycles, invalid data is written to the new write 
address. Overwriting of this address continues until the 
next PUSH. 

As a consequence, a maximum of 15 words can be stored 
in the RAM. The FIFO can, however, store two more 
words in the input and output registers. The total storage 
capacity is 17 words. 
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output REG 

16 x8 
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Dour D a Data 

REG 
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Figure 5. RAM Diagram 



High-Performance RAM-Based FIFO 

Figure 6 shows the address and flag logic for the 
FIFO. Modified 4-bit l inear-feedback-shift-register (LFSR) 
counters are used. Conventionally, 4-bit LFSR counter use 
the XNOR of the last two shift-register bits as feedback the 
input. T his results in., a sequence that repeats every 15 
clocks. The missing count, all-1s, can, however, be added 
to provide the count sequence shown in Table 2. 

Normally, 1110 is followed by 0111, and 1111 would 
cause the counter to lock up. To include 1111 in the 
sequence, 111 X is detected, and the shift-register input is 
inverted while this condition is met. Consequently, 1110 is 
fol lowed by 1111 and the next count is 0111, since the 
input remains inverted. The remainder of the count 
sequence is unaffected. 

A benefit of LFSR counters in this deSign is that adding 
one extra bit to the shift register permits access to two 
adjacent addresses, which, in turn, permits easy genera­
tion of the .EUbL flag. The current write address is avail­
able to the RAM, while the next write address is also 
available for comparison with the read address. When the 
next write address equals the read address the F IFO is 
full. The current write address is the sixteenth RAM loca­
tion needed for invalid data writes during idle cycles. The 
FIFO is empty when the current read address becomes 
equal to the current write address, which is yet to be writ­
ten with valid data. 
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re-

� -
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Figure 6. AddressIFlag Logic 
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Table 2. Adder-Counter Sequence 
Shift Register Input t 

0 0 0 0 
1 0 0 0 
1 1 0 0 
1 1 1 0 
1 1 1 1 
0 1 1 1 
1 0 1 1 
1 1 0 1 
0 1 1 0 
0 0 1 1 
1 0 0 1 
0 1 0 0 
1 0 1 0 
0 1 0 1 
0 0 1 0 
0 0 0 1 
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Figure 7. PUSH/POP Arbitration 

The arbitration logic is shown in Figure 7. As in the previ­
ous design, the core of the arbiter is a multiplexer that 
selects the next operation according to the requests and 
the status of the RAM. The prt6'rity input must be defined 
and implemented as discussed previously. 

The output of the multiplexer is High when a read is to be 
performed. The Highfi causes the read address to be both 
selected for the RAM and simultaneously updated. Other­
wise, the write address is selected. The write address is 
only updated, however, when a PUSH is requested and 
the UPDATE-WAODRS command is issued. 
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PUSH/POP requests and input data must set up to the 
falling edge of the clock, and POPed data becomes avail­
able on the subsequent rising edge. If a request cannot be 
serviced immediately, it is stored in one of two flip-flops, 
and a ROY is asserted on the falling clock edge at the 
start of the RAM cycle. If a request can be serviced, the 
corresponding ROY flag is never asserted. 

When a PUSH is deferred, the input data is still captured 
in the input register, but it is not transferred to the RAM. In 
this case, BOY should suppress further PUSHes. The 
ROY flags are cleared at the start of the RAM cycle in 
which the request is serviced. 



XAPP 030.000 

Summary 

Megabit FIFO in Two Chips: 
One LCA Device and 

One DRAM 

Application Note By PETER ALFKE 

This Application Note describes the use of an LCA device as an address controller that permits a standard 
DRAM to be used as deep FIFO. 

Xilinx Family 

XC30001XC3100 

Introduction 

A bit-serial FIFO buffer is a general-purpose tool to 
relieve system bottlenecks, e.g., in LANs, in communica­
tions, and in the interface between computers and periph­
erals. Small FIFOs are usually designed as asynchron­
ous shift registers, but a larger FIFO with more than 256 
locations is better implemented as a controller plus a two­
port RAM, or as a controller plus a Single-port RAM, 
either SRAM or DRAM. 

SRAMs are fast and easy to use, but at least four times 
more expensive than DRAMs of equivalent size. Dynamic 
RAMs offer lower-cost data storage, but require complex 
timing and address multiplexing, which makes them unat­
tractive in small designs. For FI FOs with more than 256K 
capacity, a DRAM offers the lowest cost solution, if the 
controller can be implemented in a compact and cost­
effective way. An XC3020 Logic Cell Array can easily per­
form all the control and addressing functions with many 
gates left over for additional features. The XC3020 can be 
programmed to control one or more DRAMs for a FIFO of 
up to 16 megabytes, with data rates up to 16 Mbits per 
second serially or 16 Mbytes per second byte-parallel. 

Logic Description 

This FIFO DRAM controller comprises the following. 

• Input/output buffer with synchronizing logic 

• 20-bit Write pointer (counter) 

• 20-bit Read pointer (counter) 

• 20-bit full/empty comparator 

• 1 O-bit address multiplexer 

• Control and arbitration logic 

Figure 1 is a block diagram of the FIFO Controlier. The 
Write pointer defines the memory location where the 
incoming data is to be written, while the Read pOinter 
defines the memory location where the next data can be 
read. The identity comparator between the address point­
ers signals when the FIFO is full or empty. 

1.1. 

Demonstrates 

Non-linear Counters 
Pseudo-random RAM Addressing 

When the Write and Read pointers become identical as a 
result of a Write operation, the FIFO is full, and further 
Write operations must be prevented until data has been 
read out to create space in the memory. If the two pOint­
ers become identical as a result of a Read operation, the 
FIFO is empty and further Read operations must be pre­
vented until new data has been written in. With a single­
port RAM, Read and Write operations must be inherently 
sequential, and there is no danger of confusing the full 
and empty state, a problem that has plagued some two­
port designs. 

A straightforward design would use synchronous binary 
counters for the two pOinters, but it is far more efficient to 
use linear feedback Shift-register (LFSR) counters. Such 
counters require significantly less logic and are faster 
since they avoid the carry propagation delay inherent in 
binary counters. LFSR counters have two peculiarities: 
they count in a pseudo-random sequence, and they usu­
ally skip one state, i.e., a 20-bit LFSR counter repeats 
after 22°_1 clock pulses. In a FIFO Controller, both these 
issues are irrelevant; the address sequence is arbitrary, 
provided both counters sequence identically. 

The RAS/CAS multiplexing of the 20-bit address is per­
formed without an explicit multiplexer. Every other bit of 
the shift-register counter is used to provide the 10-bit 
address. Before the incrementing shift, these bits are 
used as the Row address. After incrementing, they are 
used as the Column address. The Column address of any 
position is thus identical with the Row address of the fol­
lowing pOSition, but since the binary sequence of a shift 
register counter is pseudo-random anyhow, this is not a 
problem. 

The address generation logic is shown in Figure 2. With 
this design, two Shift-register counter bits fit into one 
XC3000-series CLB, with the identity comparator using 
the combinatorial portion of the same CLB, Figure 3. 
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The FIFO controller permits the user to perform totally 
asynchronous Read and Write operations, while it syn­
chronizes communication with the DRAM. The design 
takes advantage of the l.!=lRAM internal refresh counter by 
using CAS-before-RAS refresh/address strobes. 

Both 20-bit pointers, plus their 20-bit identity comparator, 
plus the Row/Column multiplexer thus fit into only 20 
CLBs; r�fresh timer and address multiplexer use another 
10 CLBs and the data buffer plus control and arbitration 
logic take another 23 CLBs, for a total of 53, an easy fit in 
an XC3020. 

This design can easily be modified for larger or smaller 
DRAMs. Other variations that might be considered are: 
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multiple parallel bits, e.g., byte-parallel operation, inter­
rupt-drivencontrol, multiplexed data for multiple parallel-bit 
storage, and byte parallel storage with bit-serial 110. This 
latter case requires special attention when the FIFO is 
emptied after a non-integer number of bytes has been 
entered, and requires direct communication between the 
input Serial-to-Parallel converter and the output Parallel­
to-Serial converter. 

This design is available from Xilinx. Call the Applications 
Hot Line 408-559-7778 or 1-800-255-7778. 
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Summary 

Four-Port DRAM Control ler 
Operates at 60 MHz 

Application Note By JEFFREY GOLDBERG 

This Application Note d�scribes a high-performance DRAM controller implemented in a single Xilinx EPLD. 

XlllnxFamlly 

XC7200/xC7300 

Introduction 

Multi-port memory arrays are used in many applications, 
such as telecommunications, g raphics and VME cards. 
Although these applications serve many different pur­
poses, they share a common need: they must quickly and 
effiCiently access a shared memory space through sev­
eral different ports. The control logic must perform a com­
plex arbitration function, yet must run at a high clock 
speed. 

The XC7236A architecture is well suited for implementing 
the fast, complex state machines found in multi-port arbi­
tration schemes. The XC7236A-1 6  can implement a 
quad-ported DRAM memory controller capable of arbitrat­
ing among fou r  access requests in one 60-MHz clock 
cycle. This DRAM controller is capable of supporting 70-
Mbyte/s burst transfers over a 32-bit bus, Figure 1 .  

Demonstrates 

High-speed State Machines 

The design uses 94% of the available Macrocells, yet 
runs at the maximum specified speed of the device. 
Familiar third-party tools reduce both the design effort 
and time, and XEPLD translator quickly compiles even 
the most complex designs. 

Theory of Operation 

The arbiter implements a round-robin algorithm, where 
the priorities for the four ports are arranged in circular 
order; the most recently served port is automatically 
assigned lowest priority. Each port can also lock the arbi­
ter to retain ownership between back-to-back accesses. 
Such locking is necessal)' for semaphore reading and 
writing in multiprocessor systems . 
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Figure 1 .  Quad-Port Memory Controller 
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The arbiter evaluates incoming access requests while it is 
in  any of four idle states. The specific idle state depends 
on the last request, and determines the priority of the 
incoming requests. If the arbiter is not locked, it grants 
access to the highest priority request that is pending, and 
issues a memory-access request to the on-chip DRAM 
controller. During its transition to one of four  port-access­
active states, the arbiter asserts the grant signal to the 
appropriate port. The grant signals are used to enable the 
port control, address and data busses. The arbiter 
remains in its active state until the DRAM controller sig­
nals that it has completed the single or burst access. 

The arbiter then goes to the idle state corresponding to 
the port that was just serviced, thus placing that port at 
the lowest priority level. If another access request is 
pending, the arbiter wil l issue another memory-access 
request to the D RAM controller. The data access wil l 
occur as soon as the DRAM control ler has precharged 
the memory. The interaction between arbiter and DRAM 
controller is shown in Figure 2. 

Arbitration 
Cycle 

�XILINX 

The DRAM control ler also arbitrates between memory 
requests from the ports and refresh requests from the on­
chip refresh counter, as can be seen in Figure 3. The 
address-multiplexer control l ine and the DRAM strobes 
are sequenced by the control ler's state machine. They 
are enabled by the byte select and write enable outputs of 
the port. 

The controller informs the port when there is val id data on 
the bus by asserting the READY output. If burst access is 
enabled, fast 3-clock memory accesses are performed 
until the port drops the burst request l ine. The controller 
then begins to precharge the memory. and asserts DONE 
to inform the port arbiter that the final memory access is 
completed. 

Device Util ization 

When implemented in PLDs, multi-port-arbiter state 
machines tend to be product-term intensive. The 
XC7236A is particularly well suited for such applications 
since each Macrocel l  can handle up to 1 7  product terms. 
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Figure 2. Quad-Port DRAM Controller TImIng Diagram 



Four-Port DRAM Controller Operates at 60 MHz 

Of the eight Macrocells required to implement the port 
arbiter, one Macrocell  uses ten product terms one uses 
nine terms, one uses eight terms; the remaining five Mac­
rocells use seven product terms each. In total, 1 48 prod­
uct terms, and 34 of the 36 Macrocells are used. The 
Macrocell XOR gates in the XC7236 significantly reduce 
the number of product terms used in the 1 0-bit refresh 
counter. In total ,  the DRAM control ler occupies 94% of the 
XC7236A. 

Design Methodology 

The design lends itself very well to a modular behavioral 
description of its state machine. The ABEL 4 compiler was 
used to generate three Boolean equation files from high­
level descriptions of the refresh counter, and the arbiter 

and DRAM controller state machines. A main P LUSASM 
file was then derived from the three equation files. 

In this design, the main file only defines the external sig­
nals to and from the XC7236A. With this design 
approach, individual state machines and counters can be 
developed in a modular fashion, using the design tools 
most appropriate to each module. XEPLD software com­
piles the files in about five minutes, and generates a sin­
gle file that can be downloaded into the device 
programmer. 

Detailed design fi les are included with the XEPLD soft­
ware, and are available from Xilinx Applications. They wil l  
soon be available from the Xil inx Technical Bulletin 
Board. 
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Figure 3. DRAM Controller State DIagram 
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