
FIFOs and Shared-Memory Designs
for Telecommunications

Steven K. Knapp
Regional Sales Manager

XilinX® Asia Pacific

Introduction
As the telecommunications market has grown, so has
the number of various systems and protocols. Linking
the different telecommunication systems together is a
high value-added function. Usually, these various
systems have different data transmission rates Which
require interfacing two asynchronous systems together.
Designers need to buffer data between two systems
running at different speeds.

First-In, First-Out memories (FIFOs), or other forms of
shared memory, offer an easy solution to the data
buffering problem. FIFOs automatically solve the timing
problems associated with interfacing two asynchronous
systems.

This paper demonstrates various applications of FIFOs
and shared memories using programmable logic in real­
world telecommunication applications. Some designs
require only small buffers, a few bytes deeps. Others
require deeper FIFOs, often 32 or more bytes deep. In
some cases, systems require much larger FIFOs�ften
more than 64K bytes deep. And finally some systems
require fully shared memories with multiple,
simultaneous read and write ports.

The two types of programmable logic architectures used
in these applications include Field Programmable Gate
Arrays (FPGAs) and Erasable Programmable Logic
Devices (EPLDs). While either architecture can
implement most any function, the FPGAs are better at
register- and IIO-intensive applications. EPLDs are
better suited to complex control functions and high­
speed state machines.

The FIFO and shared memory applications demon­
strated include:

• Small, Register-Based General-Purpose FIFO
(pages 3 through 7)

This application describes a small 8x8 FIFO used to
synchronize two systems with roughly similar data
transmission rates. The design demonstrates how
to build a small FIFO using a Xilinx XC3000A or
XC3100 FPGA device. The maximum clock
frequency for the FIFO is 42 Mhz when built in an
XC31 00-3 device which is fast enough for CEPT E3
protocol applications.

• Larger, High-Speed FIFO Using On-Chlp RAM
(pages Sthrough 12)

,

Larger FIFOs, up to 64 or more bytes deep, fit into
the Xilinx XC4000 family FPGAs. The XC4000
family FPGAs contain on-ehip RAM making FIFOs
very efficient. This appliC4tion shows a high-speed
version of a FIFO used in video-conferencing
applications. The example design is only 16-bytes
deep. However, the techniques shown here can be
expanded to deeper and wider FIFOs.

• Very Large FIFO Using DRAM
(pages 14 through 16)
Some applications, with widely different transmis­
sion rates, require much larger FIFOs. Usually,
these FIFOs are too large to fit into a single pro­
grammable logic device.

However, building a 1Mx1 or 128Kx8 FIFO is easy
using a Xilinx XC3020A and a 1 Mbit DRAM
memory. The FPGA contains the FIFO controller
circuitry while the DRAM becomes the FIFO
memory. Even larger FIFOs are possible using·
larger DRAMs.

• Four-Port Shared Memory Controller
(pages 17 through 19)

1

Some applications require simultaneous memory
access from different read and write ports. This is a
common function in local area network (LAN)
bridges where various protocols are connected
together.

The controller must arbitrate between the various,
simultaneous requests to determine which protocol
actually accesses the memory at any one time. The
arbitration state machine logic can be quite
complex, requiring a device capable of handling
such complexity.

This design uses a Xilinx XC7200A EPLD which
supports up to 17 product terms per macrocell and
offers predictable 60 Mhz performance with 100%
routing and utilization.

sknapp
Rectangle

sknapp
Rectangle

Why Use Programmable Logic?

Many very high volume telecommunication applications
require very low-cost logic. These are generally long­
established functions like telephone handsets, etc.
Chip-sets are usually available for these applications, or
the volumes are high enough to justify an ASIC solution.

However, many high-value applications are in new and
emerging telecommunications markets. These functions
are generally require flexibility as standards emerge.
For example, the interface between the existing
telephone infrastructure and new carriers like SDH and
new networking structures like Asynchronous Transfer
Mode (ATM) require adaptability as standards change
and sOlidify.

The benefits of programmable logic in tele­
communications applications include:

• High density logic. Up to 25,000 gates on a single
programmable device.

• Plenty of flip-flops for. building data registers, shift
registers, FIFOs, state machines, and counters.
One programmable logic device may contain
thousands of flip-flops.

• High speed logic. Today's programmable logic
can operate at over 150 Mhz for some functions.
Most telecommunications applications, including
high-speed functions like SONET and SDH, can
now use programmable logic.

• Easy modifications. Make design changes without
incurring additional cost. There are not any Non­
Recurring Engineering (NRE) charges as there are
with ASICs. This reduces the development costs for
a project.

• Faster product development. Make mod-
ifications quickly, in only a few minutes to hours.
Even field hardware updates are possible with
reprogrammable logiC devices.

• Highly reliable. The high level of testability gives
programmable logic extremely high device reliability.
This is especially true for reprogrammable devices
like SRAM-based FPGAs.

• Low power operation. FPGAs offer low operating
power-down to 1 O�A in standby mode. EPLDs are
much lower power than the PAL ®s that they
replace.

Conclusions

Interfacing different telecommunications systems to­
gether is a high value-added portion of the market.
Such systems require FIFOs and shared memories to
resolve asynchronous timing problems. Programmable
logic provides simple and reliable solutions for building
FIFO circuits. In addition, programmable logiC offers
high-density, cost-effective, flexible solutions for many
telecommunications applications.

Designs on Demand

All four applications are available on diskette as
completed designs. Most of the designs are drawn
using the VIEWlogic® VIEWdraw<l!l schematic editor.
PLUSASMTM equation files are available for the multi­
port shared memory controller built using an EPLD.

Please contact your local Xilinx representative for a
copy or contact the Xilinx Asia Pacific office at:

Xilinx Asia Pacific
Unit 2308-2319, Tower 1
Metroplaza
Hing Fong Road
Kwai Fong, N.T.
HONG KONG

852-410-2717 (phone)
852-418-1600 (FAX)
hongkong@xilinx.com (Internet)

VIEWlogiC® VI EWdraw® are registered trademarks of VI EWlogic Systems, Inc"
PAL ® is a registered trademark of Advanced Micro Devices.
Xilinx® is a registered trademark and PLUSASM is a trademark of Xilinx, Inc.

Copyright © 1993-1994 by Xilinx, Inc. All rights reserved.

2

Register-Based FIFO

XAPP 005.002 i5 Application Note By BERNIE NEW AND WOLFGANG HOFLICH

Summary
While XC3000-series lCA devices do not provide RAM, it is possible to construct small register-based FIFOs.
A basic synchronous FIFO requires one ClB for each two bits of FIFO capacity, plus one ClB for each word
in the FIFO. Optional asynchronous input and output circuits are provided. Design files are available for
two implementations of this design. The fastest of the two implementations uses a constraints file to achieve
better placement.

Specff/catlons
Size
Maximum Clock Frequency XC31 00-3
Number of ClBs

Introduction

a x a Bits
42 MHz
40

In the absence of RAM, XC3000 FIFOs must be con­
structed with registers. Using both flip-flops, one ClB is
required for each two bits of FIFO capacity. For a syn­
chronous FIFO, an additional one ClB per word is
required for control. Thus an a-word by a-bit FIFO can
be implemented in 40 ClBs. Speed is a function of
depth, with an a-word FIFO able to achieve speeds of up
to 42 MHz.

Asynchronous inputs and.outputs may be added if
desired. Each of these adds nl2 elBs for an n-bit wide
FIFO, plus a few additional ClBs for control logic. Typi­
cally, asynchronous inputs and outputs operate more
slowly because of the handshake required for synchroni­
zation. Where burst input or output speed is required for
data transfer, the FIFO should be operated in synchro­
nism with the high-speed port.

The basic designs shown use simple flags that permit
the input and output of single words. For block transfers,
flags could be generated for signaling the availability of a
block of data or space for a block of data.

Synchronous FIFOs

The basic FIFO design, shown in Figure 1, comprises a
broadside shift register; each word has a separate shift
enable. A control flip-flop, associated with each word,
contains a valid flag that is shifted with the data. The
shift-control logic uses these valid flags to generate shift
enables and control the flow of data through the FIFO.

Whenever a register does not contain valid data, shift is
enabled for that register, and for all the registers up­
stream from it. This causes data to continuously shift
through the FIFO, with valid words backing-up at the
output. They remain there until a POP command
enables the shift in all the registers in the FIFO. Invalid
data is not retained.

� Supporting design files are available on the XUinx 3

XI/lnx Family
XC3000IXC3100

Figure 2 shows the detail of the FIFO. For simplicity, only
two data bits are shown (the top two rows of flip-flops);
all other data bits are identical. The bottom row of flip­
flops contains the valid bits. The shift control logic is the
chain of OR gates; a column of flip-flops is enabled if its
valid bit, or any valid bit to the right, is not asserted.

The POP command acts like an additional active-low
valid bit, which is to the right of all the columns in the
FIFO. When it is High, all the registers shift. If the sec:':
ond to last register contains valid data, this is shifted into
the last register, and the VALID flag remains High. Oth­
erwise, invalid data is shifted into the last register,and
the VALID flag goes Low. The last register continues
shifting until it receives valid data, when the VALID flag
goes High.

Data can only be written into the FIFO if the first register
contains invalid data or valid data that is about �o be
shifted out. This condition is signaled by the ROY flag,
that is also the shift enable for the first register. Conse�

°7 °7

06 °6
Os °5
°4 SHIFT

°4
°3 REGISTER °3
°2

°2

°1 °1

Do 00
PUSH VALID

ROY POP

X197S

Figure 1. 8-Worcl x 8-Bit Synchronous FIFO (40 elBs)

SE,

0, o 01---+-10 Q)- � 0 0

CE CE l> CE
I

o O�--+-l 0 Q S-I- 0 Q

CE CE � CE
I

PUSH o Q "-...--+-1 0 Q S-I- D Q

CE � CE
I

ROY)+-�
Figure 2. Detail o f Synchronous FIFO

quently, data is alwayS being shifted in when the FIFO is
ready. The function of PUSH is simply to identify the data
being shifted in as valid, so that it is retained in the FIFO.

I n the diagram, the CLB clock enable (CE) is used as shift
enable. When combining pairs of flip-flops into CLBs, CE
can only be used if adjacent bits of the same register are
combined. If it· is more convenient, bits of equal weight
from adjacent registers may be combined. In this case,
function generators must be used to implement shift
enable. This entails a simple 2-input multiplexer that
selects input data when shift is enabled , and selects
existing data from the flip-flop when it is not enabled.

The speed of the FIFO is determined by the ripple-OR
time of the shift-control logic, and the distribution and set­
up times of the shift-enable signals. This defines the set­
up time for the POP command. The settl ing time for the
shift-control logic is one CLB delay per two words of FIFO
depth. Longl ines should be used to distribute the shift­
enable signals.

Asynchronous Input Stage

Asynchronous data may be entered into the FIFO using
the circuit shown in Figure 3. An additional input holding

XAPP 005.002 4

�XILINX

0 Q 0 Q D Q r----+ a,

� CE � CE � CE
I I I

0 Q 0 Q 0 o f---+

� CE � CE l> CE
I I I

D Q 0 Q D Qt-� VALID

� CE t> CE � CE
I I I

-a=; /P- � POP

X'976

register is provided to facil itate edge-triggered input. if
appropriate, this can be implemented in lOB registers .

Data may only be entered when the ROY flag signals that
the input register is available to accept it. The input clock
(PUSH) also asserts the PUSH INP signal which removes
the ROY flag. On the next internal clock, PUSH INT is
asserted and PUSH I NP cleared. When shift is enabled
into the first register of the FIFO, data is transferred out of
the holding register, PUSH INT is cleared and ROY is re­
asserted.

If data is being i nput from a synchronous system that is
not synchronized to the FIFO internal clock, the circuit
shown in Figure 4 should be used. Again, an input holding
register is provided. However, it is enabled by PUSH,
instead of being clocked by it (an lOB register cannot be
used). As before, PUSH causes PUSH INP to be
asserted. Feedback around the flip-flop sustains PUSH
INP until it is recognized by the internal clock, permitting
the PUSH command to be removed after the one input
clock.

The entry of data into the FIFO proceeds as in the previ­
ous scheme. ROY is registered to synchron ize it to the
input clock. The negative clock edge is used for this, so

Register-Based FIFO

INPUT
CLOCK
(PUSH)

ROY

INPUT CLOCK

0

'-- [>

0

[>

Q

Q r-----<

RD

--r-

PUSH INP ro--

r---<:�I""

Figure 3. Asynchronous Input Stage

r--- 0 Q

r- �

that, if the FIFO is sufficiently fast and is not full, the ROY
flag will remain set, and data can be entered on succes­
sive input clocks. If the positive clock edge had been
used, ROY would always be Low for at least one clock. At
best, this would only permit data to be entered on alter­
nate input clocks, no matter how slow.

Asynchronous Output Stage

The circuit shown in Figure 5 should be used, if an asyn­
chronous output is required. For an immediate, edge-trig­
gered output, a holding register is provided, which is
clocked by the output clock (POP). lOB flip-flops may be
used for this register.

The output register may only be clocked when the ROY
flag signals that data is available in the last register of the
FIFO. The output clock causes data to be transferred out
of the FIFO, and asserts POP OUT. This removes the
RDY flag. On the next internal clock, POP INT is asserted
and POP OUT is.cleared. POP INT is held, and the FIFO
shifts, until the last register again contains valid data. It is
then cleared, anq the ROY flag is re-asserted.

If data is being output to a synchronous system that is not
synchronized to the FIFO internal clock, the circuit shown
in Figure 6 should be used. The output register, which
cannot be implemented in lOBs, is enabled by POP. POP
also causes POP OUT to be asserted. Feedback around

VADCnnI;,M? 5

INTCLK INTCLK
SEO SEl

0 Q 0 Q

� [> r-[> CE CE

J I
PUSH

tNT
0 Q 0 Q VALID 1

� [> r- I> CE CE

I I
INTCLK

-. �
-�

X1977

the register sustains POP OUT until it is recognized by
the internal clock, even if POP is removed and another
output clock occurs.

The transfer of data out of the FIFO proceeds as in the
previous scheme. ROY is synchronized with the negative
edge of the output clock. As a result, data can be output
on successive clocks if the FIFO is fast enough and data
is available.

Implementation Notes

The obvious organization for the FIFO is as a rectangular
array of CLBs, with the control logic in the bottom row.
The flip-flops may be partitioned into CLBs in two ways. If
adjacent bits of the same word are combined, the result is
a FIFO that is twice as wide as it is tall (assuming equal
numbers of bits and words).

Alternatively, two bits of equal rank from adjacent words
may be combined. This gives a FIFO that is twice as tall
as it is wide and is potentially faster. The critical path
through the control logic passes through a chain of half as
many gates as there are words. The tall, narrow organiza­
tion allows these gates to be implemented in adjacent
CLBs with zero-delay direct interconnects.

Both forms of the FIFO are available as macros, using
CLBMAPs.

D O

PUSH

ROY

INPUT
ClK

PUSH

-

'NT
elK

>--

�

>--

0

>

0

[>

Q

Q

CE

I
PUSH INP ro--

Qr-- - 0 Q
r< I

"..1""
r-->

RO

I

o�d
<l

Figure 4. Asynchronous Input Stage (From Synchronous System)

0

INT
ClK

SEN_2

0

�>

0
>--

Q

CE

J

Q

INT
ClK

SEN_2

>--

>--

0

[>

0

Q

CE

I

Q-

INT
SEo ClK

�

PUSH
INT

>--

0 Q

>
CE

I

0 Q

>
CE

J

/F>-

OUTPUT
CLK

>--

INT
SE1ClK

>--

�

0

>

0

>

CE

I

CE

1

�XILINX

Qr---Q10

Q � .-. VALID 1

INTClK

LG=J
X197B

0 Q Q

>

> [> CE CE POP INT

I I

INTCLK

LG=J � Q D -r-

<
-

Figure 5. Asynchronous Output Stage

POP
...... OUT

O�

... 1 p-

-LJ

-Q 0 - 1

RO <
I

ROY

OUTPUT
CLK
(POP)

X3460

Register-Based FIFO

INT
CLK

SEN•2

0 0 a

� t> CE
I

D af-

� t> CE
I

INTCLK

INT
CLK

SEN•1

�

�

0

�

0

I>

a

CE

I

aI-

CE
I

�
POP
INT

� a

Figure 6. Asynchronous Output Stage (To Synchronous System)

7

OUTPUT
eLK

0

t>

D

� t>

".,.
POP
OUT

0
0 1- f- - a

..... �p.
< I--

a

CE
I

a

0 kJ=
<!--

RO
T

POP

ROY

POP

OUT
CLK

X3205

�XILINX�
XAPP 044.000

Summary

High-Performance
RAM-Based FIFO

Application Note By BERNIE NEW

Two FIFO designs are. described. In both cases, arbitration permits any RAM cycle to be a PUSH or a POP.
XC4000 RAM performance is improved through read-modify-write operation, and the fastest clock required is at
the RAM-cycle rate. The first design is expandable to any size FIFO, while the second, faster design is
restricted to 16 or 32 words.

Specifications

Maximum Clock Frequency (estimated for XC4000-5)

16 x 8-bit FIFO 40 MHz

Introduction

T he four components of a RAM-based FIFO are shown in
Figure 1. To control the RAM, the address-logic block
maintains two addresses, one for the current write loca­
tion, where data is PUSHed, and one for the current read
location, from which data is POPped. Following a PUSH
or a POP, the corresponding address is incremented,
causing data to be written and read sequentially.

The flag logic uses the read and write addresses to deter­
mine the status of the memory. If the memory contains no
valid data, an EMPTY flag is created; a FULL flag is cre­
ated when all memory locations are occupied.

Data
Input

PUSH!
POP

ACKI
ROY

-

-

DIN

f---

Arbiter
Logic

-

t--

Figure 1. FIFO Block DIagram

RAM

ADDRS

Address
logic

Flag
Logic

DOUT
Data
Output

Full
Empty

X3462

LCAFami/y

XC4000

Demonstrates

RAM Operation

The arbitration logic, for the most part, simply passes
PUSH and POP requests to the RAM. Simultaneous
PUSH and POP requests, however, must be resolved.
The simplest schemes have a fixed priority, with either
PUSH or POP being designated as the priority operation.
If the priority operation is not possible because the RAM
is full or empty, the priority should be overridden. Other
schemes can alternate in priority between PUSH and
POP; or favor one operation while its request persists .

Both FIFOs described depend on read-modify-write oper­
ation of the RAM, with Write Enable asserted every cycle.
In the first design, a data multiplexer permits "non-write"
cycles by rewriting existing data into the RAM. The same
multiplexer provides bank selection for RAM expansion,
permitting any size FIFO.

In the second design, the data multiplexer is omitted for
faster operation. As a consequence, however, bank
selection is not possible, and the RAM depth is limited to
one CLB. Without a data multiplexer, only new data can
be written in the RAM. During non-POP cycles, new data
is always written to the current write address. If PUSH is
asserted, the data is valid and the write address is incre­
mented before the next write. If PUSH is not asserted, the
address is not incremented, and the invalid data is subse­
quently overwritten. During a POP cycle, data read from
the RAM is stored in a register, and the RAM location
immediately overwritten with invalid data.

Operating Description

Expandable FIFO
Figure 2 shows the RAM and its address counters. A key
element is the use of a BUFGS to drive the RAM Write
Enable and clock the address register. The low skew of
the global net ensures that the data and address hold

1-+----iD Q

CE

AC1 AC2

Input
Data

Figure 2. RAM and Address Logic

4

o Q

Inactive
AD DRS

AC3

Write Active

D Q

CE

AC4

times are met. The RAM is written every clock cycle, and
the multiplexer preceding the RAM determines whether
new data is entered or the old 'data is re-entered. If it is
necessary to expand the RAM, a bank select signal,
derived from the address counter, can be ANOed with the
Active signal to limit writing to a single bank of RAM. In
addition, a read-data-select multiplexer must be provided.

The address-generation logic is shown in the lower por­
tion of Figure 2. The right-hand register contains the
address currently being used by the RAM, the write
address during a PUSH and the read address during a
POP. The left-hand register contains the address that is
not being used.

The address-logic instruction set, Table 1, permits the
active address to be incremented and remain active for
successive PUSHes or POP s, or be incremented and
become inactive, for a PUSH followed by a POP, or vice
versa. It also permits the addresses to remain unchanged
or simply interchanged.

.B..U..b and EMPTY flags are generated in the flag logic,
Figure 3. Rags can only be asserted or de-asserted dur­
ing active PUSH or POP cycles, and both are triggered by
the incremented active RAM address becoming equal to
the inactive address. If this equality occurs during a PUSH
cycle, the new write address contains the next data to be
POP ed, and the FIFO is full. If equality is reached during a
POP, the FIFO is empty since the new read address is
waiting to be written in the next PUSH operation.

XAPP 044.000 9

RAM

DIN DOUT

ADDRS

4

Active Write

�XIUNX

D Q output
Data

Table 1. Address logic Instruction Set

CurrentOp NextOp AC
RIW ActJInact RIW 1234

R Active R 1 01 1

R Inactive R XOXO

W Active R 1 101

W Inactive R 0101

R Active W 1101

R Inactive W 0101

W Active W 1 01 1

W Inactive W XOXO

X3464

Consequently, the flags can be generated by gating the
comparator output with the Write signal and registering it
during active RAM cycles. The address-logic instruction
set is constructed such that the inactive address and the
incremented active address are always available to the
comparator. The flags clear on the next active RAM cycle,
when the addresses become non-equal. For correct oper­
ation, this cycle must be a PUSH if the FIFO is empty or a

POP if it is full.

Figure 4 shows a simple arbitration circuit. The PUSH and
POP inputs control a multiplexer that determines the oper­
ation in the next RAM cycle. If PUSH only is asserted, the
next cycle is a write. If POP only is asserted, it is a read

High-Performance RAM-Based FIFO

Figure 3. Flag Logic

Inactive Compare

ADDRS

ADDRS
INC

:::

Write

cycle. If both are asserted together, the next operation in
the next RAM cycle is determined by a user-defined Pri­
ority signal. Several options for the Priority signal are dis­
cussed later.

If a PUSH or a POP is requested and the FIFO is not full
or empty, respectively, the next cycle is declared Active. A
write or a read occurs and the corresponding address is
incremented. Otherwise, the cycle is inactive; no read or
write occurs and the addresses remain unchanged. In an
inactive cycle, the Write signal is de-asserted by default.

Two handshake signals are generated. ACK acknowl­
edges that a PUSH request will be honored in the next
RAM cycle. Input data is captured on the falling clock

PUSH --1r��================ji·
pop

CE

Active

o a

CE

Active X3465

edge that starts the RAM cycle. ROY indicates that a POP
request will be honored during the next RAM cycle. Out­
put data is made available on the falling clock edge that
ends the RAM cycle.

In deciding the next operation when both PUSH and POP
are asserted, the most straightforward Priority functions
simply default to one operation or the other. To always
write, a logic High could be used, and to always read, a
logic Low. In practice, however, this can lead to. wasted _
cycle. For example, PUSH could win when the FIFO is full
and the operation cannot be performed. A better choice is
to use B.l.!J. as Priority to always select write unless the
FIFO is full. Similarly, using EMPTY will cause POP to
always win unless the FIFO is empty.

r-------------------�ACK

����=========;==+===��--------------------� RDY

o
o
1

Priority

Figure 4. PUSH/POP Arbitration Logic

r-+-e--ID a 1-----<11>___-------_ Write

Decode 1----.- AC1-4

o a 1:------....... -----... Active

X3466

The above priorities are useful when receiving data from a
burst source, such as a bus, or transmitting burst data.
While burst is in progress, however, the other operation
can be locked out for many cycles. If a more even
resource allocation is required, Write can be used as Pri­
ority. In this case, requesting PUSH and POP continu­
ously results in alternating reads and writes.

While the time to acquire the FIFO is reduced to no more
than one cycle, the guaranteed peak PUSHI POP rate is
also reduced. In the limit, PUSH and POP may only oper­
ate at half the RAM cycle rate. The average data through
the FIFO is unaffected, however. In the long term, it is
obvious that no more than half the RAM cycles can be
PUSHes. Attempting to achieve more will fail when the
FIFO becomes full. Similarly, no more than half the cycles
can be POPs, since the FIFO will become empty.

A third option permits both burst reads and burst writes,
although either PUSH or POP may experience a long
delay acquiring the FIFO if it is busy. Priority is connected
to Write. As a result, the FIFO repeats its last operation
whenever there is a conflict. A burst read or write will con­
tinue, and lock out the other operation until the burst is
complete.

High-Performance FIFO
The RAM block for the high-performance FIFO is shown in
Figure 5. In this deSign, the RAM has simple input and
output registers. The input register captures data on the
falling edge of the clock which, in addition, marks the start
of a RAM cycle. Data is captured in the output register at
the end of the read phase, when the clock goes high.

PUSH

8 CE
Input 0 a DIN
Data

REG

AOORS

BUFGS 4
ClocklWE

SEL/Update ----------7
RAOORS � ____;:.�

E.XILINX

Prior to the start of the RAM cycle, a selection is made
between the read and write addresses, and the selected
address is registered when the RAM cycle starts. The
read address is only selected when. a POP is to be exe­
cuted. Stable output data is retained from POP to POP,
however, since the output �egister is only enabled during
POPs. If the output data is required to change on the fall­
ing edge, an additional register must be used.

Since new data is written into the RAM every qycle, the
read address cannot be selected during idle cycles; valid
data waiting to be read would be destroyed by the write.
Consequently, the write address is selected for both
PUSH and idle cycles .

In the previous design, the RAM can be filled completely.
When the FIFO is full, the next write address becomes
equal to the next read address. This is not a problem, pro­
vided the location is read before it is overwritten. In the
current design, there must always remain .at least 'one
unused location where invalid data is written during idle
cycles.

When a PUSH occurs, the data written finally becomes
valid, and the write address is incremented. During sub­
sequent idle cycles, invalid data is written to the new write
address. Overwriting of this address continues until the
next PUSH.

As a consequence, a maximum of 15 words can be stored
in the RAM. The FIFO can, however, store two more
words in the input and output registers. The total storage
capacity is 17 words.

Enable
output REG

16 x8
RAM

CE 8 Output
Dour D a Data

REG

RADDRS WADORS X3467

Figure 5. RAM Diagram

High-Performance RAM-Based FIFO

Figure 6 shows the address and flag logic for the
FIFO. Modified 4-bit l inear-feedback-shift-register (LFSR)
counters are used. Conventionally, 4-bit LFSR counter use
the XNOR of the last two shift-register bits as feedback the
input. T his results in., a sequence that repeats every 15
clocks. The missing count, all-1s, can, however, be added
to provide the count sequence shown in Table 2.

Normally, 1110 is followed by 0111, and 1111 would
cause the counter to lock up. To include 1111 in the
sequence, 111 X is detected, and the shift-register input is
inverted while this condition is met. Consequently, 1110 is
fol lowed by 1111 and the next count is 0111, since the
input remains inverted. The remainder of the count
sequence is unaffected.

A benefit of LFSR counters in this deSign is that adding
one extra bit to the shift register permits access to two
adjacent addresses, which, in turn, permits easy genera­
tion of the .EUbL flag. The current write address is avail­
able to the RAM, while the next write address is also
available for comparison with the read address. When the
next write address equals the read address the F IFO is
full. The current write address is the sixteenth RAM loca­
tion needed for invalid data writes during idle cycles. The
FIFO is empty when the current read address becomes
equal to the current write address, which is yet to be writ­
ten with valid data.

'� }I .-
.........

re-

� -
'� II ./ .-

Figure 6. AddressIFlag Logic

,� LCE
.-JJ)-- O .- c>

Update
WAODRS

I

Shift Register
(Reset 10000)

Comparator =o.--Full

I

,_
ct>

_"1))-0 .- iCE
SEUUpdate

RAOORS

I
Shift Register
(Reset 0000)

Table 2. Adder-Counter Sequence
Shift Register Input t

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
0 1 1 0
0 0 1 1
1 0 0 1
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

0 0 0 0
1 0 0 0

X5281

WAOORS

Comparator =o.--Emply

I 1
RAOORS

X3468

�XILINX

�--------------------��-----'O�p�RDV

POP

0

Empty
0

Priority

PUSH

Hiil

Figure 7. PUSH/POP Arbitration

The arbitration logic is shown in Figure 7. As in the previ­
ous design, the core of the arbiter is a multiplexer that
selects the next operation according to the requests and
the status of the RAM. The prt6'rity input must be defined
and implemented as discussed previously.

The output of the multiplexer is High when a read is to be
performed. The Highfi causes the read address to be both
selected for the RAM and simultaneously updated. Other­
wise, the write address is selected. The write address is
only updated, however, when a PUSH is requested and
the UPDATE-WAODRS command is issued.

o Q

Full

0 Q
Enable
OutP�
REG

SELJUpdate
RADDRS

Update
WADDRS

o Q �------��lno.pm�RD�Y

X3470

PUSH/POP requests and input data must set up to the
falling edge of the clock, and POPed data becomes avail­
able on the subsequent rising edge. If a request cannot be
serviced immediately, it is stored in one of two flip-flops,
and a ROY is asserted on the falling clock edge at the
start of the RAM cycle. If a request can be serviced, the
corresponding ROY flag is never asserted.

When a PUSH is deferred, the input data is still captured
in the input register, but it is not transferred to the RAM. In
this case, BOY should suppress further PUSHes. The
ROY flags are cleared at the start of the RAM cycle in
which the request is serviced.

XAPP 030.000

Summary

Megabit FIFO in Two Chips:
One LCA Device and

One DRAM

Application Note By PETER ALFKE

This Application Note describes the use of an LCA device as an address controller that permits a standard
DRAM to be used as deep FIFO.

Xilinx Family

XC30001XC3100

Introduction

A bit-serial FIFO buffer is a general-purpose tool to
relieve system bottlenecks, e.g., in LANs, in communica­
tions, and in the interface between computers and periph­
erals. Small FIFOs are usually designed as asynchron­
ous shift registers, but a larger FIFO with more than 256
locations is better implemented as a controller plus a two­
port RAM, or as a controller plus a Single-port RAM,
either SRAM or DRAM.

SRAMs are fast and easy to use, but at least four times
more expensive than DRAMs of equivalent size. Dynamic
RAMs offer lower-cost data storage, but require complex
timing and address multiplexing, which makes them unat­
tractive in small designs. For FI FOs with more than 256K
capacity, a DRAM offers the lowest cost solution, if the
controller can be implemented in a compact and cost­
effective way. An XC3020 Logic Cell Array can easily per­
form all the control and addressing functions with many
gates left over for additional features. The XC3020 can be
programmed to control one or more DRAMs for a FIFO of
up to 16 megabytes, with data rates up to 16 Mbits per
second serially or 16 Mbytes per second byte-parallel.

Logic Description

This FIFO DRAM controller comprises the following.

• Input/output buffer with synchronizing logic

• 20-bit Write pointer (counter)

• 20-bit Read pointer (counter)

• 20-bit full/empty comparator

• 1 O-bit address multiplexer

• Control and arbitration logic

Figure 1 is a block diagram of the FIFO Controlier. The
Write pointer defines the memory location where the
incoming data is to be written, while the Read pOinter
defines the memory location where the next data can be
read. The identity comparator between the address point­
ers signals when the FIFO is full or empty.

1.1.

Demonstrates

Non-linear Counters
Pseudo-random RAM Addressing

When the Write and Read pointers become identical as a
result of a Write operation, the FIFO is full, and further
Write operations must be prevented until data has been
read out to create space in the memory. If the two pOint­
ers become identical as a result of a Read operation, the
FIFO is empty and further Read operations must be pre­
vented until new data has been written in. With a single­
port RAM, Read and Write operations must be inherently
sequential, and there is no danger of confusing the full
and empty state, a problem that has plagued some two­
port designs.

A straightforward design would use synchronous binary
counters for the two pOinters, but it is far more efficient to
use linear feedback Shift-register (LFSR) counters. Such
counters require significantly less logic and are faster
since they avoid the carry propagation delay inherent in
binary counters. LFSR counters have two peculiarities:
they count in a pseudo-random sequence, and they usu­
ally skip one state, i.e., a 20-bit LFSR counter repeats
after 22°_1 clock pulses. In a FIFO Controller, both these
issues are irrelevant; the address sequence is arbitrary,
provided both counters sequence identically.

The RAS/CAS multiplexing of the 20-bit address is per­
formed without an explicit multiplexer. Every other bit of
the shift-register counter is used to provide the 10-bit
address. Before the incrementing shift, these bits are
used as the Row address. After incrementing, they are
used as the Column address. The Column address of any
position is thus identical with the Row address of the fol­
lowing pOSition, but since the binary sequence of a shift
register counter is pseudo-random anyhow, this is not a
problem.

The address generation logic is shown in Figure 2. With
this design, two Shift-register counter bits fit into one
XC3000-series CLB, with the identity comparator using
the combinatorial portion of the same CLB, Figure 3.

DIN

IClK

DOUT
OClK

"L: 7

nL
/

RDRB

(Read R eady/Busy)

WRRB

(Write Re

FUll

EMPTY

WRE

ROE

ady/Busy)

•
•

. VO
Buffer

•

I
.----...

Control -1
.----...

Figure 1. Megabit FIFO Controller in an XC3020

Write Pointer

Comparator

Read Pointer

The FIFO controller permits the user to perform totally
asynchronous Read and Write operations, while it syn­
chronizes communication with the DRAM. The design
takes advantage of the l.!=lRAM internal refresh counter by
using CAS-before-RAS refresh/address strobes.

Both 20-bit pointers, plus their 20-bit identity comparator,
plus the Row/Column multiplexer thus fit into only 20
CLBs; r�fresh timer and address multiplexer use another
10 CLBs and the data buffer plus control and arbitration
logic take another 23 CLBs, for a total of 53, an easy fit in
an XC3020.

This design can easily be modified for larger or smaller
DRAMs. Other variations that might be considered are:

n
L:

7

" .:::: 7

10
/

/

/

�o

I
1�

/

/ /
10

3/
/

.

10
L

MUX /

Q

o

AO-9

RAS
�s
WE

�XILINX

DRAM

X3070

multiple parallel bits, e.g., byte-parallel operation, inter­
rupt-drivencontrol, multiplexed data for multiple parallel-bit
storage, and byte parallel storage with bit-serial 110. This
latter case requires special attention when the FIFO is
emptied after a non-integer number of bytes has been
entered, and requires direct communication between the
input Serial-to-Parallel converter and the output Parallel­
to-Serial converter.

This design is available from Xilinx. Call the Applications
Hot Line 408-559-7778 or 1-800-255-7778.

Megabit FIFO In Two Chips: One LCA Device and One DRAM

Push

f2Qj
Shift Register (Write)

I Identity Comprator

l:)J>[Shift Register (Read)

Po p

Figure 2. DRAM Address Generation

,..-- 0 0 -

DIN

r-- F 0 0 - -

-
,..-- 0 O t--

'"----

DIN

Read Address

Figure 3. 2-Blt Slice of Two Counters and Comparator in Two CLBs

I
r--........

Fully 2:1
Empty MUX

/
I

I n

DIN

F 0

- 0

COMPo r-

DIN

Write Address

-

�
�
f-
f-
f-
�
�
�
�

DRAM
Address

X5309

0 ----

0

0 -

Read
Address

Write
Address

Compare
Two
Address
Bits

X3072

XAPP 036.001

Summary

Four-Port DRAM Control ler
Operates at 60 MHz

Application Note By JEFFREY GOLDBERG

This Application Note d�scribes a high-performance DRAM controller implemented in a single Xilinx EPLD.

XlllnxFamlly

XC7200/xC7300

Introduction

Multi-port memory arrays are used in many applications,
such as telecommunications, g raphics and VME cards.
Although these applications serve many different pur­
poses, they share a common need: they must quickly and
effiCiently access a shared memory space through sev­
eral different ports. The control logic must perform a com­
plex arbitration function, yet must run at a high clock
speed.

The XC7236A architecture is well suited for implementing
the fast, complex state machines found in multi-port arbi­
tration schemes. The XC7236A-1 6 can implement a
quad-ported DRAM memory controller capable of arbitrat­
ing among fou r access requests in one 60-MHz clock
cycle. This DRAM controller is capable of supporting 70-
Mbyte/s burst transfers over a 32-bit bus, Figure 1 .

Demonstrates

High-speed State Machines

The design uses 94% of the available Macrocells, yet
runs at the maximum specified speed of the device.
Familiar third-party tools reduce both the design effort
and time, and XEPLD translator quickly compiles even
the most complex designs.

Theory of Operation

The arbiter implements a round-robin algorithm, where
the priorities for the four ports are arranged in circular
order; the most recently served port is automatically
assigned lowest priority. Each port can also lock the arbi­
ter to retain ownership between back-to-back accesses.
Such locking is necessal)' for semaphore reading and
writing in multiprocessor systems .

PORT -"_REQ - ACCESS_REQ
/RAS

PORT-,,_LOCK Port DONE DRAM
IGRANT-" Arbiter Control

PORT_B_REQ -

PORT _B_LOCK
/GRANT_B

PORT_C_REQ

PORT_C_LOCK
IGRANT_C

PORT'::'O::'REQ

PORT_D_LOCK
IGRANT_D

/WRITE --===�----I
IREADY ----------1

BURST ---------....

/BYTE [0:3] ----------L�_r_'

Figure 1 . Quad-Port Memory Controller

ICAS [O:3]
/WE

COL_ADDRESS

X1817

The arbiter evaluates incoming access requests while it is
in any of four idle states. The specific idle state depends
on the last request, and determines the priority of the
incoming requests. If the arbiter is not locked, it grants
access to the highest priority request that is pending, and
issues a memory-access request to the on-chip DRAM
controller. During its transition to one of four port-access­
active states, the arbiter asserts the grant signal to the
appropriate port. The grant signals are used to enable the
port control, address and data busses. The arbiter
remains in its active state until the DRAM controller sig­
nals that it has completed the single or burst access.

The arbiter then goes to the idle state corresponding to
the port that was just serviced, thus placing that port at
the lowest priority level. If another access request is
pending, the arbiter wil l issue another memory-access
request to the D RAM controller. The data access wil l
occur as soon as the DRAM control ler has precharged
the memory. The interaction between arbiter and DRAM
controller is shown in Figure 2.

Arbitration
Cycle

�XILINX

The DRAM control ler also arbitrates between memory
requests from the ports and refresh requests from the on­
chip refresh counter, as can be seen in Figure 3. The
address-multiplexer control l ine and the DRAM strobes
are sequenced by the control ler's state machine. They
are enabled by the byte select and write enable outputs of
the port.

The controller informs the port when there is val id data on
the bus by asserting the READY output. If burst access is
enabled, fast 3-clock memory accesses are performed
until the port drops the burst request l ine. The controller
then begins to precharge the memory. and asserts DONE
to inform the port arbiter that the final memory access is
completed.

Device Util ization

When implemented in PLDs, multi-port-arbiter state
machines tend to be product-term intensive. The
XC7236A is particularly well suited for such applications
since each Macrocel l can handle up to 1 7 product terms.

Arbitration Arbitration
Cycle Cycle

! r-_______ ro __
R_T_� __

BU�R,_S_T_A_CC_E_S_S
______ �, 1 ,�--P-O-RT--���A-CC-E-S-S---�\ !

•

Arbiter State I IOLEA I I IOLEA I I IDLES I
CLK

PORT_A-REQ .J \�--------------_--�I
IGRANT_A �I...-_____________________JI

ACCESS_REO ------' '----'
IRAS \� ____________________ -JI \� __________ -JI

'---

\� __________________ JI '� ________ J/�-----

ICAS \� __ JI\\-__ �I \\-_-�/
READY __________ ---Jr----\ I\� __________ �/\� __

BURST ______________ ...1/ ,'-_____________________ _

DONE ___________________________ �I\� ________________ ��

--------_------�/�------------------------------�\�----PORT_B_REO . _

�RANT_B -----------------------,\� _____________ Jr__
X1818

Figure 2. Quad-Port DRAM Controller TImIng Diagram

Four-Port DRAM Controller Operates at 60 MHz

Of the eight Macrocells required to implement the port
arbiter, one Macrocell uses ten product terms one uses
nine terms, one uses eight terms; the remaining five Mac­
rocells use seven product terms each. In total, 1 48 prod­
uct terms, and 34 of the 36 Macrocells are used. The
Macrocell XOR gates in the XC7236 significantly reduce
the number of product terms used in the 1 0-bit refresh
counter. In total , the DRAM control ler occupies 94% of the
XC7236A.

Design Methodology

The design lends itself very well to a modular behavioral
description of its state machine. The ABEL 4 compiler was
used to generate three Boolean equation files from high­
level descriptions of the refresh counter, and the arbiter

and DRAM controller state machines. A main P LUSASM
file was then derived from the three equation files.

In this design, the main file only defines the external sig­
nals to and from the XC7236A. With this design
approach, individual state machines and counters can be
developed in a modular fashion, using the design tools
most appropriate to each module. XEPLD software com­
piles the files in about five minutes, and generates a sin­
gle file that can be downloaded into the device
programmer.

Detailed design fi les are included with the XEPLD soft­
ware, and are available from Xilinx Applications. They wil l
soon be available from the Xil inx Technical Bulletin
Board.

Aseert /cAS RFRQ

REFRSHO Assert ICAS RFRQ IACCESS_REO*/RFRO IDLE [] IACCESS_REQ + /RFRO

I I Assert /RAS, CLR_RFRQ 1 IACCESS_REO' /RFRO
Assert /RAS

REFRSH1 PRCHRG2
ACCESS_REO*/RFRQ

Msert !RAS
ACCESSO

Nege1e CLR_RFRQ 1 Assert COLUMN_ADDRESS
Assert Enabled !WE

REFRSH2 ACCESS1

1 Assert Enabled /CAS

REFRSH3 ACCESS2
Asaert /CAS

1 Maert READY

REFRSH4 ACCESS3
Negate ICAS, READY

BURSTO
BURST_EN

Negate !RAS, /CAS
/BURST_EN T Negate /RAS, /cAS, COLUMN_ADDR ESS, IWE

Asaert, DONE Negale READY

PRCHRG1
Negate DONE

PRCHRGO

t
X1819

Figure 3. DRAM Controller State DIagram

1 0

The Programmable Logic CompanySM

Unit 2308-231 9 , Tower 1 , Metroplaza, Hing Fang Road , Kwai Fang, N .T. HONG KON G
(852) 41 0-27 1 7 (phone) (852) 4 1 8-1 600 (FAX) hongkong@x i l inx . com (I nternet)

