

Lee Goldberg

Daniel Platzker

Steve Kn app

Dave Orecchio

Sanjay Thatte
Andy Stevens

Dan Isaacs

Al USA

cMenior

\
Prevailing’

rw"“i {mw‘&’?k‘lf‘

GMST'I'DI'_

VMETROE

is-Whight Composty

$7 XILINX

| g 4 Order Of BUSineSS

= Four short presentations (15 minutes each)

» Design Tools and Design Portability
e Test Tools and Equipment

Design Tools/Design Portability
Ips and Tricks for Vendor Neutral FPGA

Why Vendor Neutrality:
Device & Tools

Important to retaining flexibility to switch vendors

 Existing vendors leapfrog each other on capabilities/cost

Users Rate Importance of
Vendor Independence

All attributes rate above average!

One synthesis
tool for all FPGAs

What is Required for Vendor
Neutral Development

1. Vendors neutral tools
2. Vendor neutral methodologies

PGA 1. Vendor Neutral Tools

All tools in the flow should support multiple
vendors:

/D
e Embedded = o
ESL DeTeIgpment /8 g

Reuse &

’ Creation
_ Verification

HWISW
Integration

PCB

" FPGA 2. Vendor Neutral Methodologies

_ _ Technology
= Higher levels of abstraction [idependentipieicnes

I al d Ik
e C++, Mathworks, SystemC | page @(posedge cld

' multO_result <= A * B;

-— PCOUT

" DSP Block

“ FPGA 3. Minimize Vendor Dependent IP

= Best:

e vendor independent IP

e In-house or 3" party IP vendors

4. Discipline

Management needs to endorse vendor
neutral development tools and

Summary

Vendor neutrality = ability to select the best FPGA for
your next project, regardless of silicon vendor

= Why?

Test Tools and Equil

R |
Prevailing

... and Everything Else

* |t’s obvious that you need FPGA devices and
related design software

= But what else is required to be successful?

Density (or Performance)

Complexity/Challe

Lab Time is Expensive!

* Find and fix bugs before you enter the lab!
= Simulate first

. Development Boards

= Build or buy?
» Development boards speed development

In-System Download/Debug
OF=10][=1S

= Supplied by FPGA vendor,
although 3" party solutions available

« Sometimes built into development board

Device Programmers

= Required to program nonvolatile memory
« Some FPGAs have internal nonvolatile memory
e Others use a companion memory device

: Test Equipment

= \WWhat you need depends on the complexity of
application? I gﬁ

#5X

LOGICPORT

34 CHANNEL LOGIC ANALYZER
pcTestinstruments.com

108D14

=2 = = Time: Tng: Norm Pattem
!rh]lPrg:amT 4) Mot Present | oy 5 mv &)L ock

S0 0 mv/div
o 900 uv

In-System Debugging Tools

= Visibility is key to successful debugging
= Most horrors are buried deep inside FPGA

= Some vendors offer ability to view internals
o Xilinx ChipScope

San José, CA USA
December 2008

- Test Sockets

= Many new FPGAs use advanced, high pin-
count, surface-mount packages

" The Key to Success?

» FPGA design is much more than just devices
and design software

-
|| .- Ay a -" ' ...
/\ @, / 4 A CAI CA

/E

ocket

Gat

FPGA Summit, Tutorial T2A, Wednesday December 10, 2008

FPGA Verification

Dave Orecchio, President and CEO

GateRocket, Inc. 19 Crosby Drive, Suite 100 Bedford, MA 01730

Email: RocketDrive@ GateRocket.com
Phone: +1 (781) 908-0082

Web: http://www.GateRocket.com

New FPGAs Approach ASIC Complexity

e Each year, FPGAs address more markets
600 -

e But designs are becoming too complex to 20
_ 500 test and debug D
< 5
8 400! >3
: 3
2 300 - >~
O @)
'S S
> 200 . o
9 -100 =

& 100. —o—
0 .0

1998 1999 2000 2001 2002 2004 2007 2009
250 nm 180 nm 180nm 150 nm 130nm 90nm 65nm 45nm

Page 25 Source: FPGA Companies /E GatERDCkEtN

Issues and Challenges with FPGA projects

Meeting timing budgets
Getting it to work on the PCB
Completing functional verification
Signal integrity

Engineering productivity
Meeting cost budgets
Meeting power budgets
Lengthy design cycles
Managing complexity

Tool interoperability

Design for test

Pin assignment closure

IP selection/verification
Minimizing die size

Using all available gates

4%

10%

8%

10%

71%

56%
8%
52%
39%
39%
24%
39%
26%
39%
0%
37%
42%
36%
47%
30%
23%
26%
24%
25%
17%
17% B Current process geometry
20% B As process geometries shrink

Related to functional verification
Source: CMP

10. How critical are the following issues and challenges with your current FPGA projects? (Select one best response for each issue / challenge)

10a. How critical will these issues and challenges become — as process geometries continue to shrink?

Where do errors originate?

Electronic Design Software World .~
,,

Design e

AR = Errors ,

Specification . ot
errors Hardware Design % IP Bugs R
C"S AR v
Design S
Verification /’

Synthesis — P&R /,"

s=Tool Bugs .

,’/ Hardware Verification
ot & Debug
Hardware/Software
Debug

Product

bage 27 % BN GateRocket

Where are errors detected?

Electronic Design Software World .~
,,

Design y

AR PR Errors)t

Specification . g]
P errors Hardware Design % IP Bugs -~ +Faster execution
O = ; isibil

-~ -Poor visibility
Design -Hard to debug & fix
Verification , .
-Long cycle times per
AR iteration

Synthe3|s - P&R

ﬁTooI Bugs

-Slower execution ," Hardware Verification
, . & Debug
-Can’t see tool or IP bugs e
+Excellent visibility Hardware/Software
+Easy to debug & fix Debug

J Product

page 28 " B} GateRocket

Functional Verification = Testbench + Engine(s)

Electronic Design Software World

Design
% IP Bugs
Sy =

= PR Errors
it cati .
Speé:rlrg:étlon Hardware Design
Design
Verification
Synthesis — P&R

s=Tool Bugs

Test Bench

EEEEEER

I Top Level |
FPGA
|Mod1||Mod2||Mod3| Design

{IPBIk1| |PLLBK| | (HDL)

Verification Engine

Page 29

BN GateRocket

Typical Test Bench Approaches

e HDL-based
Test Bench .
F 1111111 e Directed tests
= e Randomized tests

[Mod 1| [Mod 2| [Mod 3|

wea) uee) | ® HVL-based (SystemVerilog, e, Vera,
FPGA Design (HDL) OysStemC)

e Constrained, randomized

e Class-based/object oriented

e Embedded software-based

B} GateRocket

Page 30

Verification Engine Tradeoffs

Ease of debugging High Speed
oVisibility & controllability o Long setup/change time
oFast design iteration o Low visibility and

controllability

HDL Hardware Hardware Prototype
Simulation Acceleration Emulation Boards

100‘% software 100% hardware

BN GateRocket

Page 31

HDL Simulation

HDL |
Simulation

e Typical application: block-level verification

e Fast design change turnaround

e Full visibility/controllability
e Testbench methodology:

e From: simple directed + randomized tests

e To: complex object oriented constrained-random (HVL)
e Challenges:

e Chip-level verification may require compute farm
e Long “unbreakable” test sequences can take days/weeks
e Don’t see chip-level or device specific IP issues

B} GateRocket

Page 32

Hardware Acceleration

Hardware
Acceleration

e Typical application: block-chip regression test

e 1-2 orders of magnitude faster than simulation
e Testbench methodology:

e Typically directed tests with simple randomization
e Challenges:

o Capital cost

e Setup time

e Matching results with simulation

e Specific hardware or software flow makes it impossible to verify
designs with FPGA specific IP blocks

B} GateRocket

Page 33

Hardware Emulation

Hardware
Emulation

e Typical application: chip/system regression test

e 3-4 orders of magnitude faster than simulation
o Typically uses different mapping than target FPGA
e Testbench methodology:

e Embedded code
e Challenges:

o Capital cost

e Setup time

e Matching results with simulation and target FPGA
e Debugging

e Flow makes it impossible to verify designs

page 34 With FPGA specific IP blocks /E GateRocket

New: Silicon Accurate, Device Native Verification

Uses the native FPGA device as the accelerator

Silicon
Accuracy

Device Native Prototype
Verification Boards
HDL Hardware Hardware
Simulation Acceleration Emulation

100‘% software 100% hardwaré

BN GateRocket

Page 35

Device Native Verification

Device Native
Verification

e Typical application: block-system regression test

e Order of magnitude speed-up over simulation
o Full debug visibility

e Silicon-accurate results
e Testbench methodology:
e Same as HDL simulation
e Challenges:

e Inefficient testbench can degrade acceleration

B} GateRocket

Page 36

Conclusion

e Thorough functional verification prior to system
Integration is a must for complex FPGAs

e Simulation coupled with hardware assisted
verification offers the best of all worlds

e Performance/coverage, debugging

e Device-native verification offers a promising, silicon
accurate approach

B} GateRocket

Page 37

Learn more - Tutorial T3B - FPGA Verification

Tutorial T3B 2:40 to 5:00 PM Today

e Joe Rodriguez, Prod Mktg Mgr, Mentor Graphics
e Presentation: Recalculating the Road to Successful FPGA Verification
e Chris Schalick, CTO, GateRocket
e Presentation: A Case for Hardware-Assisted Verification
e James Smith, Dir EDA Vendor Relations, Altera
e Presentation: FPGAs Increasing Role in Development
e Judith Smith, Prod Mgr, Agilent Technologies
o Presentation: FPGA-Based DDR Memory Controller Validation

e Carsten Hoffman, Emulation Platforms and Dan Isaacs, Dir Adv Prod
Mktg, Xilinx

e Presentation: Platform FPGA Automated Regression Test Methodology

B} GateRocket

Page 38

System Design to
FPGA Implementation =

-
o

FPGA Summit
December 2008

Presenter
Presentation Notes

Agenda

= Scope of presentation
= Different methodologies possible
= Common theme - Tackling FPGA design complexity

= FPGA design challenges

= Possible design flow solution
= System Design
= RTL Design

= Physical Implementation
= Verification

FPGA Design Challenges

= Challenges

= Business driven
= Reduce cost
= Meet performance goals
= Reduce time to market

= Technology driven
= Device size and complexity
= Design size and complexity
= Certifiable design process

= Solution - ASIC style design methodology
= Raise level of abstraction
= Reuse designs
= Maintain vendor independence
= Use advanced verification tools

FPGA Design Flow

Planning
\ 4
Requirements
Capture
\ 4

Conceptual
Design

Verify RTL
Design

\ 4
Create RTL

v

Synthesize Design

¥

Place, Route

v

Trace
Requirements
Throughout
The Flow

Verify Gate-
Level Design

v

\{

Program or
Mfg Device

Test HW
Device

v

Impact Of Change

Impact

SW / Macro
Architecture

90%

||||||||||||||

Design Stage

30%
10%

Backend

RTL

Raise Level Of Abstraction
Scalable Transaction Level Modeling

= Single C/C++ source for
synthesis, verification
and analysis

High Level TLM Model TLM Virtual
Synthesis Builder

Prototype = Automated timing
annotation from HLS
scheduler

= Fast System simulation at
TLM speed [x1,000 and

up)

=

n 44 pa—
Scalable TLM 2.0 Based Modeling Methodology

Raise Level Of Abstraction
Transaction Level Modeling Solutions

Modeling Assembly Validation Analysis

The image cannat be displayed,
Your computer may not have
enough memory to open the
image, or the image may have
been corrupted. Restart your
computer, and then open the

file again. If the red x still
appears, you may have to delete
the image and then inzert it
again.

Automate
Modeling

|Z| The image cannot be displaved, Your
cormputer may not have enough
memaory to open the image, or the
image may have been corrupted.,
Restart your computer, and then open
the file again, IF the red x still
appears, you may have to delete the
image and then inzert it again,

ESL/RTL
Integration

HW/SW
Validation

Al W Imp1I
Mﬁrt L

|Z| The image cannot be displayed,
‘four computer may not have
enaugh memory ta open the
image, or the image may have
been corrupted, Restart yaur
computer, and then open the file
again. If the red x still appears,
you may have ta delete the image
and ther insert it again,

Optimize System

Architecture

Raise Level Of Abstraction

HW/SW Debug & Analysis Platform

Key Features

Powerful HW & C/C++ views
TLM Tracing

Powerful Debug — Process Control

Timed / Untimed simulation
Timing / Power Analysis

Key Benefits

Reducing validation cycles
Bridging SW & HW Design
System-level Exploration

Standard Based — OSCl/gdb/gcc

Hardware View

BT
CHm master d
F-£4 Parts

[4 clack

B3 Processes
-@ main_action
EHE Chk
G- mem_fast
B mem_slow
BE s
B arbiter

1 Base classes
-3 Data Members
& bool m_vethose
g Int m_timeout
#. sc_in=hool= clock

sc_part<simple_bu®

& unsigned int m_adcie

C/C++ View

-imel- big master_direct_h 21
vs_master_direct_h

b

us_direct_if.h"

vs_master_direct)

€4 Methods

e Constructor(sc_module_name, unslgned
Constructar(const simple_bus_master_dir
Destructor

454

main_action()

i

s e 4 i 2
sc_port¢simple_bus_direct_if> bus_port;] J

SC_HAS_PROCESS(simple_bus_master_direct);

// constructor
simple_bus master_direct(sc_mocdule_name nad |

me
Rau————- simple_bus_master_direct.h (C++ Fnl

-

Raw----—- *sCratohx

Compilation process com

Tronsaction View
Fie Viw

EwE s

Tms [&] Pon/Chaonsl |

........

Transaction

N Insl_MS1 Bus_por
o} v N inst_Busid Stive_pon
:

(|
t § Inst_MS1.Bus_pont

Irost_Busll Stave_port

\

]

Y

%
1§ insz_MS1 Bus_pont
t §

)

]

0

Raise Level Of Abstraction

ESL Synthesis

Use flows that are certified C-Synthesis

ESL Synthesis
= Synthesizes standard ANSI C++

enerati

= Technology aware scheduling

= High quality RTL code generation RTL Synthesis)
ESL output optimized for B

FPGA Synthesis « D
FPGA Synthesis integrated "~

with ESL tool

Raise Level Of Abstraction

Better QoR with ESL-FPGA synthesis flow

m Technology aware C++ synthesis

= Allocation, Scheduling based on timing and area of library elements
(Library elements: logic gates, arithmetic operators, memaories)

= Timing and area information extracted from FPGA synthesis tool
(Library characterization process)

m ESL tool outputs FPGA synthesis tool ready RTL
= FPGA synthesis tool includes ESL tool libraries

m Latest FPGA timing data available to ESL tool

Presenter
Presentation Notes

Raise Level Of Abstraction

Close integration - ESL and FPGA Synthesis

= FPGA Synthesis invoked
from ESL with project settings

Cross-probe _ ,|C++ ¢t -
- ~

N

//
- . N
being carried over) . Y
' .
! !
/
= Extensive one-step cross Sso, ol e ””
probing from FPGA Synthesis //’ TS s
and Place & Route result files ’ N

FRPGA Synthesis [

Schematics, v

d
- - - — |- -
m FPGA Synthesis is tested in Hierarchy Browsers E\ Timing Reports.
ESL tool regression framework Constraint Reports

to ESL tool

’——N

Voo
g
Iy

\
[11]]

Post P&R Reports,

Reuse Designs
HDL Design Environment

= Save time by analyzing Design Quality Design
& correcting design Integrity Assessment fUnderstanding

integrity

Build
Repository

= Ensurethe best reuse
decision by measuring
code quality

= Accelerate design
understanding of
structure & behavior

Automate Analysis Assess RTL to Visualize Behavior Create IP and
. Extract, paCkage and of RTL Integrity Design Standards and Structure Document Designs

manage IP

Maintain Vendor Independence

FPGA Synthesis

= Efficient Design Creation
AddA
= SystemVerilog & standards support, ESL s =====""':
integration 4 e
. . L AAAA X
= Physical Synthesis g4 A
- ;SmsEE 2
= Broad device support 3 ENEEEE A
= Superior results for all vendors
= |ncremental Synthesis
.) Improve QOR
= Support for incremental design flow de t
= Graphical Resource Analysis & Control Speed up time to market

= Allocate resources to optimize for performance
or area

Maintain Vendor Independence

FPGA Synthesis

Analysis & Debug
Missing Constraint report
Clock Domain Crossing report mProve QOR
Reduce cost
Comprehensive messaging/warnings Speed up time to market

Cross-probing between HDL & Schematics

Critical-path viewing for timing analysis
What if analysis without re-synthesis

Graphical resource analysis and control

Technical Support

Support complete flow with proper ownership

Maintain Vendor Independence

FPGA Synthesis

Safe Operation

= Safe FSM encoding to avoid single-event
upset

= Support for Redundancy

= Safer synthesis with selective optimization

Verifiable & Reproducible

= (Good integration & support with

Improve Design Safety

verification tools

= Deterministic netlist generation

Synthesis Artifacts

= Extensive reporting for documentation
requirements

Use Advanced verification tools
Advanced Functional Verification

Inputs Qutputs

v' Design v Waveforms

v" Testbench v" Functional Coverage
v' Assertions v" Code Coverage

v' Verification Plan v" Toggle Coverage

v Power files v' Assertion Coverage
Languages Analysis

v VHDL v' Hardware debugger
v" Verilog v UCDB

v PSL v' Assertion debugger
v SystemC v' Cdebugger

v' SystemVerilog v" Verification management
v CIC++

Presenter
Presentation Notes

Use Advanced verification tools
Formal Verification

100s times faster then gate level

simulation Design A

_ RTL, / gates,
100% coverage provided

Formal

Implementation . . .
Verification
Equivalence

Resolves netlist uncertainty

A complete gate-level test bench is
time consuming and large Checking

Place & Route takes a day Design B
RTL, / gates,

Running FPGA live does not test the
corners

Use Advanced verification tools

Manage Requirements in Design Flow

= Control & predict project
schedules Requirements Report & Change

Capture & Tracing Document Management

= Trace requirements through
HW design process

= Clearly communicate via
visualization & intuitive

reports
g

= Manage impact of

requirement changes Trace Through Link Automated Impact Analysis to
Authoring, Coding & Reports, Specs, Control Schedules
Testing Design & Results

= Meet safety critical &
DO-254 certification

Physical Implementation

Input data
= Synthesized design netlist

Design constraints

Improving performance

Different implementation options
Design exploration tools
Interactive physical design
Different synthesis options
Modify RTL

Debug

Insert debug logic post-synthesis

Program the device
Create bit stream

Configure design on selected FPGA device

Summary

FPGA design challenges are growing
Design process needs to be certifiable

Solution is to use ASIC style design methodology

To enhance effectiveness
= Raise level of abstraction
= Reuse designs
= Maintain vendor independence
= Use advanced verification tools

_ Breakout Sessions

= Break into three groups
= Take next 20-30 minutes to discuss topics

* -n~ A Design Tools & Portability:
-+ Breakout Questions

How important is vendor independence (VI) to designers vs.

management?

What are the advantages/disadvantages of using vendor vs.
EDA tools?

When do you write VI code (inferable) vs. instantiating tech

Panel Session

» Reports back from breakout sessions
* Design Methods — Daniel Platzker

Thank you for attending!

= Please fill out the session evaluations and
return them up front

	Tutorial 2A. Practical Exercise: Get Your FPGA Application Up and Running
	Introductions
	Order of Business
	Design Tools/Design Portability�Tips and Tricks for Vendor Neutral FPGA Development
	Why Vendor Neutrality: �Device & Tools
	Users Rate Importance of Vendor Independence
	What is Required for Vendor Neutral Development
	Vendor Neutral Tools
	Vendor Neutral Methodologies
	Minimize Vendor Dependent IP
	Discipline
	Summary

	Test Tools and Equipment
	… and Everything Else
	Designs Vary by Complexity
	Lab Time is Expensive!
	Development Boards
	In-System Download/Debug Cables
	Device Programmers
	Test Equipment
	In-System Debugging Tools
	Test Sockets
	The Key to Success?

	FPGA Verification
	New FPGAs Approach ASIC Complexity
	Issues and Challenges with FPGA projects
	Where do errors originate?
	Where are errors detected?
	Functional Verification = Testbench + Engine(s)
	Typical Test Bench Approaches
	Verification Engine Tradeoffs
	HDL Simulation
	Hardware Acceleration
	Hardware Emulation
	New: Silicon Accurate, Device Native Verification
	Device Native Verification
	Conclusion
	Learn more - Tutorial T3B - FPGA Verification

	System Design to FPGA Implementation
	Agenda
	FPGA Design Challenges
	FPGA Design Flow
	Impact Of Change
	Raise Level Of Abstraction �Scalable Transaction Level Modeling
	Raise Level Of Abstraction Transaction Level Modeling Solutions
	Raise Level Of Abstraction �HW/SW Debug & Analysis Platform
	Raise Level Of Abstraction �ESL Synthesis
	Raise Level Of Abstraction Better QoR with ESL-FPGA synthesis flow
	Raise Level Of Abstraction �Close integration - ESL and FPGA Synthesis
	Reuse Designs HDL Design Environment
	Maintain Vendor Independence �FPGA Synthesis
	Maintain Vendor Independence �FPGA Synthesis
	Maintain Vendor Independence�FPGA Synthesis
	Use Advanced verification tools �Advanced Functional Verification
	Use Advanced verification tools �Formal Verification
	Use Advanced verification tools Manage Requirements in Design Flow
	Physical Implementation
	Summary

	Breakout Sessions
	Design Tools & Portability:�Breakout Questions

	Panel Session
	Thank you for attending!

