
San José, CA USA
December 2008 1

Tutorial 2A. Practical Exercise:
Get Your FPGA Application Up

and Running
December 10, 2008

Introductions

San José, CA USA
December 2008 2

Lee Goldberg

Dave Orecchio

Sanjay Thatte

Daniel Platzker

Andy Stevens

Dan Isaacs

Steve Knapp

Order of Business

Four short presentations (15 minutes each)
• Design Tools and Design Portability
• Test Tools and Equipment
• Verification
• From System Specification to FPGA Implementation

Breakout sessions on key challenges
• Design Methods
• System Interface
• Verification

Summary and panel session
San José, CA USA
December 2008 3

San José, CA USA
December 2008 4

Design Tools/Design Portability
Tips and Tricks for Vendor Neutral FPGA

Development

Daniel Platzker
FPGA Product Line Director

Mentor Graphics Corp.

San José, CA USA
December 2008 5

Why Vendor Neutrality:
Device & Tools

Important to retaining flexibility to switch vendors
• Existing vendors leapfrog each other on capabilities/cost

• New vendors offer unique capabilities, (Achronix, eAsic)

• Retain price leverage with vendors

Single tool flow less expensive
• Reduce maintenance and training

• Objective device selection

San José, CA USA
December 2008 6

Users Rate Importance of
Vendor Independence

0 1 2 3 4 5 6

One tool to help
select FPGA

Re-use IP
regardless of FPGA

Single constraints
for all FPGAs

One synthesis
tool for all FPGAs

Source: Image & Market Measurement, January 2006

(scale 1-7)1

1 2 3 4 5

All attributes rate above average!

San José, CA USA
December 2008 7

What is Required for Vendor
Neutral Development

1. Vendors neutral tools
2. Vendor neutral methodologies

• Industry standards
• Vendor neutral code
• Wrappers

3. Minimal use of vendor dependent IP
4. Discipline

San José, CA USA
December 2008 8

1. Vendor Neutral Tools

All tools in the flow should support multiple
vendors:
• ESL
• Design Creation
• Synthesis
• Equivalence checking

The Exception
• Place & Route

San José, CA USA
December 2008 9

2. Vendor Neutral Methodologies

Higher levels of abstraction
• C++, Mathworks, SystemC

Industry standards
• SDC, LRM compliance

HDL coding style
• Inference instead of instantiation

Wrappers for vendor dependent IP
• DCMs, PLLs

always @(posedge clk)
begin
mult0_result <= A * B;
PCOUT<= mult0_result

+ PCIN;
end

Technology
Independent Inference

San José, CA USA
December 2008 10

3. Minimize Vendor Dependent IP

Best:
• vendor independent IP
• In-house or 3rd party IP vendors

Acceptable:
• Everything with standard interface that can be swapped
• Wrappers needed for some IP (e.g., DCM, PLL)

Challenge:
• Vendor CPUs (Software, peripherals)
• Consider portable CPUs, e.g., ARM, Gaisler, Tensilica

San José, CA USA
December 2008 11

4. Discipline

Management needs to endorse vendor
neutral development tools and
methodologies and stick to it

San José, CA USA
December 2008 12

Summary

Vendor neutrality = ability to select the best FPGA for
your next project, regardless of silicon vendor
Why?
• Existing vendors leapfrog each other on capabilities & cost
• New vendors offer unique capabilities e.g., Achronix, eAsic
• Allows for price leverage with vendors
• Single tool flow less expensive (vs. flow per vendor)

What is necessary?
• Vendor neutral tools, methodologies, IP, discipline

Test Tools and Equipment

Steve Knapp
Principal Engineer

steve.knapp@prevailing-technology.com

San José, CA USA
December 2008 13

San José, CA USA
December 2008 14

… and Everything Else

It’s obvious that you need FPGA devices and
related design software
But what else is required to be successful?
• Development boards
• In-system programming, download, debug cables
• Device programmers (for some devices)
• Logic analyzers, signal generators, oscilloscopes
• In-system debugging tools
• Test sockets

The mundane minutiae of success

San José, CA USA
December 2008 15

C
om

pl
ex

ity
/C

ha
lle

ng
e

Density (or Performance)

Lab Time is Expensive!

Find and fix bugs before you enter the lab!
Simulate first
• Create good quality simulation models and

testbenches
• Leverage hardware in the loop if possible

– Improved accuracy (sometimes)
– Shorter run times

The difference between theory and practice
• Simulation will not find all the bugs
• But, it is an important and necessary first step

San José, CA USA
December 2008 16

Development Boards

Build or buy?
Development boards speed development
Generic or application specific
Cost from $40 to $10,000+
• Inexpensive, expendable board, one per engineer
• More expensive, application-specific board for team

San José, CA USA
December 2008 17

In-System Download/Debug
Cables

Supplied by FPGA vendor,
although 3rd party solutions available
• Sometimes built into development board

Connects FPGA or associated configuration
memory to PC or workstation
• USB / Ethernet / parallel port

Provides direct downloading,
programming, and debugging capabilities
A must have!

San José, CA USA
December 2008 18

Device Programmers

Required to program nonvolatile memory
• Some FPGAs have internal nonvolatile memory
• Others use a companion memory device

Prototyping (desktop) vs. production programmer
Value-added programming services offered by
some vendors, distributors
Don’t forget the required socket adapters

San José, CA USA
December 2008 19

Test Equipment

What you need depends on the complexity of
application?
Logic analyzers
Signal generators
Oscilloscopes
• Differential probes
• Jitter measurement

Bit error rate tester (BERT)
• High-speed serial applications

San José, CA USA
December 2008 20

In-System Debugging Tools

Visibility is key to successful debugging
Most horrors are buried deep inside FPGA
Some vendors offer ability to view internals
• Xilinx ChipScope
• Altera SignalTap II
• Altium, Synopsys,
• National Instruments

Debugging tools for
processor-based design

San José, CA USA
December 2008 21

Test Sockets

Many new FPGAs use advanced, high pin-
count, surface-mount packages
Many new FPGAs are high-performance with
associated signal integrity concerns
Sockets can be challenging and difficult to
find
• Embedded Technology
• Ironwood Electronics
• Molex

San José, CA USA
December 2008 22

The Key to Success?

FPGA design is much more than just devices
and design software
These extra items do not guarantee success
But, will make success come easier
Skimping on this equipment will cost you far
more in the long run
Advanced capabilities like high-speed serial
I/O and embedded processors require
specialized tools

San José, CA USA
December 2008 23

GateRocket, Inc. 19 Crosby Drive, Suite 100 Bedford, MA 01730
Email: RocketDrive@GateRocket.com

Phone: +1 (781) 908-0082

Web: http://www.GateRocket.com

FPGA Summit, Tutorial T2A, Wednesday December 10, 2008

FPGA Verification

Dave Orecchio, President and CEO

Page 25

New FPGAs Approach ASIC Complexity

Each year, FPGAs address more markets

But designs are becoming too complex to
test and debug

0

100

200

300

400

500

600

700

1998 1999 2000 2001 2002 2004

Lo
gi

c
El

em
en

ts
 (K

)

M
em

or
y

B
its

 (M
bi

ts
)

2007
0

10

20

30

40

2009
45 nm65 nm90 nm130 nm150 nm180 nm250 nm 180 nm

Source: FPGA Companies

Page 26

Related to functional verification

10%

4%

20%

17%

24%

23%

47%

42%

30%

26%

24%

39%

38%

39%

43%

25%

26%

30%

36%

37%

39%

39%

39%

52%

56%

66%

71%

17%

10%

8%Using all available gates

Minimizing die size

IP selection/verification

Pin assignment closure

Design for test

Tool interoperability

Managing complexity

Lengthy design cycles

Meeting power budgets

Meeting cost budgets

Engineering productivity

Signal integrity

Completing functional verification

Getting it to work on the PCB

Meeting timing budgets

Current process geometry
As process geometries shrink

10. How critical are the following issues and challenges with your current FPGA projects? (Select one best response for each issue / challenge)
10a. How critical will these issues and challenges become – as process geometries continue to shrink?

Issues and Challenges with FPGA projects

Source: CMP

Page 27

Product

Where do errors originate?

Hardware/Software
Debug

Hardware Verification
& Debug

Synthesis – P&R

Design
Verification

Hardware Design

Specification
Design
Errors

IP Bugs

Tool Bugs

Specification
errors

Electronic Design Software World

Hardware World

Page 28

Product

Where are errors detected?

Hardware/Software
Debug

Hardware Verification
& Debug

Synthesis – P&R

Design
Verification

Hardware Design

Specification

-Slower execution
-Can’t see tool or IP bugs
+Excellent visibility
+Easy to debug & fix

+Faster execution
-Poor visibility
-Hard to debug & fix
-Long cycle times per
iteration

Design
Errors

IP Bugs

Tool Bugs

Specification
errors

Electronic Design Software World

Hardware World

Page 29

Functional Verification = Testbench + Engine(s)

Synthesis – P&R

Design
Verification

Hardware Design

Specification
Design
Errors

IP Bugs

Tool Bugs

Specification
errors

Electronic Design Software World

Top Level

Mod 1

IP Blk 1 PLL Blk

Mod 2 Mod 3

Test Bench

FPGA
Design
(HDL)

Verification Engine

Page 30

Typical Test Bench Approaches

HDL-based
Directed tests
Randomized tests

HVL-based (SystemVerilog, e, Vera,
SystemC)

Constrained, randomized
Class-based/object oriented

Embedded software-based

Top Level

Mod 1

IP Blk 1 PLL Blk

Mod 2 Mod 3

Test Bench

FPGA Design (HDL)

Page 31

Verification Engine Tradeoffs

High Speed
Long setup/change time
Low visibility and
controllability

HDL
Simulation

Hardware
Acceleration

Hardware
Emulation

Prototype
Boards

100% hardware100% software

Ease of debugging
Visibility & controllability
Fast design iteration

Page 32

HDL Simulation

Typical application: block-level verification

Fast design change turnaround

Full visibility/controllability

Testbench methodology:

From: simple directed + randomized tests

To: complex object oriented constrained-random (HVL)

Challenges:

Chip-level verification may require compute farm

Long “unbreakable” test sequences can take days/weeks

Don’t see chip-level or device specific IP issues

HDL
Simulation

Hardware
Acceleration

Hardware
Emulation

Page 33

Typical application: block-chip regression test

1-2 orders of magnitude faster than simulation

Testbench methodology:

Typically directed tests with simple randomization

Challenges:

Capital cost

Setup time

Matching results with simulation

Specific hardware or software flow makes it impossible to verify
designs with FPGA specific IP blocks

Hardware Acceleration

HDL
Simulation

Hardware
Acceleration

Hardware
Emulation

Page 34

Hardware Emulation

Typical application: chip/system regression test

3-4 orders of magnitude faster than simulation

Typically uses different mapping than target FPGA

Testbench methodology:

Embedded code

Challenges:

Capital cost

Setup time

Matching results with simulation and target FPGA

Debugging

Flow makes it impossible to verify designs
with FPGA specific IP blocks

HDL
Simulation

Hardware
Acceleration

Hardware
Emulation

Page 35

New: Silicon Accurate, Device Native Verification

Silicon
Accuracy

HDL
Simulation

Hardware
Emulation

100% hardware100% software

Prototype
Boards

Uses the native FPGA device as the accelerator

Device Native
Verification

Hardware
Acceleration

Page 36

Device Native Verification

Typical application: block-system regression test
Order of magnitude speed-up over simulation

Full debug visibility

Silicon-accurate results

Testbench methodology:
Same as HDL simulation

Challenges:
Inefficient testbench can degrade acceleration

Device Native
Verification

HDL
Simulation

Hardware
Emulation

Page 37

Conclusion

Thorough functional verification prior to system
integration is a must for complex FPGAs

Simulation coupled with hardware assisted
verification offers the best of all worlds

Performance/coverage, debugging

Device-native verification offers a promising, silicon
accurate approach

Page 38

Learn more - Tutorial T3B - FPGA Verification

Tutorial T3B 2:40 to 5:00 PM Today
Joe Rodriguez, Prod Mktg Mgr, Mentor Graphics

Presentation: Recalculating the Road to Successful FPGA Verification
Chris Schalick, CTO, GateRocket

Presentation: A Case for Hardware-Assisted Verification
James Smith, Dir EDA Vendor Relations, Altera

Presentation: FPGAs Increasing Role in Development
Judith Smith, Prod Mgr, Agilent Technologies

Presentation: FPGA-Based DDR Memory Controller Validation
Carsten Hoffman, Emulation Platforms and Dan Isaacs, Dir Adv Prod
Mktg, Xilinx

Presentation: Platform FPGA Automated Regression Test Methodology

System Design to
FPGA Implementation

FPGA Summit
December 2008

Presenter
Presentation Notes

40

Agenda

Scope of presentation
Different methodologies possible
Common theme - Tackling FPGA design complexity

FPGA design challenges

Possible design flow solution
System Design
RTL Design
Physical Implementation
Verification

FPGA Design Challenges
Challenges

Business driven
Reduce cost
Meet performance goals
Reduce time to market

Technology driven
Device size and complexity
Design size and complexity
Certifiable design process

Solution - ASIC style design methodology
Raise level of abstraction
Reuse designs
Maintain vendor independence
Use advanced verification tools

FPGA Design Flow

Conceptual
Design

Create RTL Verify RTL
Design

Synthesize Design

Place, Route

Verify Gate-
Level Design

Program or
Mfg Device

Test HW
Device

Requirements
Capture

Planning

Trace
Requirements
Throughout

The Flow

BackendGateRTLESL
Design Stage

Impact Of Change
Impact

90%

10%

30%

Physical
Logic

Micro
Architecture

SW

SW / Macro
Architecture

43

Scalable TLM 2.0 Based Modeling Methodology
44

Raise Level Of Abstraction
Scalable Transaction Level Modeling

Single C/C++ source for
synthesis, verification
and analysis

Automated timing
annotation from HLS
scheduler

Fast System simulation at
TLM speed [x1,000 and
up)

High Level
Synthesis

TLM Model
Builder

TLM Virtual
Prototype

ANSI
C++

RTL

C/C++

Timing
Policies

TLM
Model

Power annotation

Raise Level Of Abstraction
Transaction Level Modeling Solutions

Analysis

Optimize System
Architecture

Modeling

Automate
Modeling

Validation

HW/SW
Validation

Assembly

ESL/RTL
Integration

Raise Level Of Abstraction
HW/SW Debug & Analysis Platform

Key Features
Powerful HW & C/C++ views
TLM Tracing
Powerful Debug – Process Control
Timed / Untimed simulation
Timing / Power Analysis

Key Benefits
Reducing validation cycles
Bridging SW & HW Design
System-level Exploration
Standard Based – OSCI/gdb/gcc

46

Hardware View

C/C++ View

Raise Level Of Abstraction
ESL Synthesis

Use flows that are certified

ESL Synthesis
Synthesizes standard ANSI C++

Technology aware scheduling

High quality RTL code generation

ESL output optimized for
FPGA Synthesis

FPGA Synthesis integrated
with ESL tool

Raise Level Of Abstraction
Better QoR with ESL-FPGA synthesis flow

Technology aware C++ synthesis

Allocation, Scheduling based on timing and area of library elements
(Library elements: logic gates, arithmetic operators, memories)

Timing and area information extracted from FPGA synthesis tool
(Library characterization process)

ESL tool outputs FPGA synthesis tool ready RTL

FPGA synthesis tool includes ESL tool libraries

Latest FPGA timing data available to ESL tool

Presenter
Presentation Notes

Raise Level Of Abstraction
Close integration - ESL and FPGA Synthesis

ESL

FPGA Synthesis

C++

HDL

Schematics,
Hierarchy Browsers Timing Reports,

Constraint Reports

Cross-probeFPGA Synthesis invoked
from ESL with project settings
being carried over

Extensive one-step cross
probing from FPGA Synthesis
and Place & Route result files
to ESL tool

FPGA Synthesis is tested in
ESL tool regression framework Post P&R Reports,

P&R

Reuse Designs
HDL Design Environment

Save time by analyzing
& correcting design
integrity

Ensure the best reuse
decision by measuring
code quality

Accelerate design
understanding of
structure & behavior

Extract, package and
manage IP

Design
Integrity

Automate Analysis
of RTL Integrity

Design
Understanding

Visualize Behavior
and Structure

Quality
Assessment

Assess RTL to
Design Standards

100%
Code

&
Design
Rules 0%

50%
80%

Build
Repository

Create IP and
Document Designs

Maintain Vendor Independence
FPGA Synthesis

Efficient Design Creation
SystemVerilog & standards support, ESL
integration

Physical Synthesis
Broad device support

Superior results for all vendors

Incremental Synthesis
Support for incremental design flow

Graphical Resource Analysis & Control
Allocate resources to optimize for performance
or area

Improve QOR

Reduce cost

Speed up time to market

Maintain Vendor Independence
FPGA Synthesis

Analysis & Debug

Missing Constraint report

Clock Domain Crossing report

Comprehensive messaging/warnings

Cross-probing between HDL & Schematics

Critical-path viewing for timing analysis

What if analysis without re-synthesis

Graphical resource analysis and control

Technical Support
Support complete flow with proper ownership

Improve QOR

Reduce cost

Speed up time to market

Maintain Vendor Independence
FPGA Synthesis

Safe Operation
Safe FSM encoding to avoid single-event
upset

Support for Redundancy

Safer synthesis with selective optimization

Verifiable & Reproducible
Good integration & support with
verification tools

Deterministic netlist generation

Synthesis Artifacts
Extensive reporting for documentation
requirements

Improve Design Safety

Use Advanced verification tools
Advanced Functional Verification

Languages
VHDL
Verilog
PSL
SystemC
SystemVerilog
C/C++

Outputs
Waveforms
Functional Coverage
Code Coverage
Toggle Coverage
Assertion Coverage

Inputs
Design
Testbench
Assertions
Verification Plan
Power files

Analysis
Hardware debugger
UCDB
Assertion debugger
C debugger
Verification management

Presenter
Presentation Notes

Use Advanced verification tools
Formal Verification

100s times faster then gate level
simulation

100% coverage provided

Resolves netlist uncertainty

A complete gate-level test bench is
time consuming and large

Place & Route takes a day

Running FPGA live does not test the
corners

Formal
Verification

Equivalence
Checking

Implementation
Step

Design A
RTL1 / gates1

Design B
RTL2 / gates2

Use Advanced verification tools

Manage Requirements in Design Flow

Control & predict project
schedules

Trace requirements through
HW design process

Clearly communicate via
visualization & intuitive
reports

Manage impact of
requirement changes

Meet safety critical &
DO-254 certification

Requirements
Capture & Tracing

Trace Through
Authoring, Coding &

Testing

Report &
Document

Change
Management

Impact Analysis to
Control Schedules

XML
ASCII

Link Automated
Reports, Specs,
Design & Results

Physical Implementation
Input data

Synthesized design netlist
Design constraints

Improving performance
Different implementation options
Design exploration tools
Interactive physical design
Different synthesis options
Modify RTL

Debug
Insert debug logic post-synthesis

Program the device
Create bit stream

Configure design on selected FPGA device

Summary

FPGA design challenges are growing
Design process needs to be certifiable

Solution is to use ASIC style design methodology

To enhance effectiveness
Raise level of abstraction
Reuse designs
Maintain vendor independence
Use advanced verification tools

Breakout Sessions

Break into three groups
Take next 20-30 minutes to discuss topics
• Design Methods — Daniel Platzker
• Systems Interface — Andy Stevens
• Verification — Dave Orecchio

Report back as part of the panel discussion

San José, CA USA
December 2008 59

San José, CA USA
December 2008 60

Design Tools & Portability:
Breakout Questions

How important is vendor independence (VI) to designers vs.
management?
What are the advantages/disadvantages of using vendor vs.
EDA tools?
When do you write VI code (inferable) vs. instantiating tech
cells?
Do you look at different vendors for each project? Why
not?

• No time?
• Strong existing vendor relationship?
• Silicon requirements met by single vendor?
• IP?

Using Vendor IP? Why?
• Because of cost?
• Happy with the vendor support?
• Which IP using the most? Processors? SERDES?

Panel Session

Reports back from breakout sessions
• Design Methods — Daniel Platzker
• Systems Interface — Andy Stevens
• Verification — Dave Orecchio

San José, CA USA
December 2008 61

Thank you for attending!

Please fill out the session evaluations and
return them up front
Key note address
Lunch time!

San José, CA USA
December 2008 62

	Tutorial 2A. Practical Exercise: Get Your FPGA Application Up and Running
	Introductions
	Order of Business
	Design Tools/Design Portability�Tips and Tricks for Vendor Neutral FPGA Development
	Why Vendor Neutrality: �Device & Tools
	Users Rate Importance of Vendor Independence
	What is Required for Vendor Neutral Development
	Vendor Neutral Tools
	Vendor Neutral Methodologies
	Minimize Vendor Dependent IP
	Discipline
	Summary

	Test Tools and Equipment
	… and Everything Else
	Designs Vary by Complexity
	Lab Time is Expensive!
	Development Boards
	In-System Download/Debug Cables
	Device Programmers
	Test Equipment
	In-System Debugging Tools
	Test Sockets
	The Key to Success?

	FPGA Verification
	New FPGAs Approach ASIC Complexity
	Issues and Challenges with FPGA projects
	Where do errors originate?
	Where are errors detected?
	Functional Verification = Testbench + Engine(s)
	Typical Test Bench Approaches
	Verification Engine Tradeoffs
	HDL Simulation
	Hardware Acceleration
	Hardware Emulation
	New: Silicon Accurate, Device Native Verification
	Device Native Verification
	Conclusion
	Learn more - Tutorial T3B - FPGA Verification

	System Design to FPGA Implementation
	Agenda
	FPGA Design Challenges
	FPGA Design Flow
	Impact Of Change
	Raise Level Of Abstraction �Scalable Transaction Level Modeling
	Raise Level Of Abstraction Transaction Level Modeling Solutions
	Raise Level Of Abstraction �HW/SW Debug & Analysis Platform
	Raise Level Of Abstraction �ESL Synthesis
	Raise Level Of Abstraction Better QoR with ESL-FPGA synthesis flow
	Raise Level Of Abstraction �Close integration - ESL and FPGA Synthesis
	Reuse Designs HDL Design Environment
	Maintain Vendor Independence �FPGA Synthesis
	Maintain Vendor Independence �FPGA Synthesis
	Maintain Vendor Independence�FPGA Synthesis
	Use Advanced verification tools �Advanced Functional Verification
	Use Advanced verification tools �Formal Verification
	Use Advanced verification tools Manage Requirements in Design Flow
	Physical Implementation
	Summary

	Breakout Sessions
	Design Tools & Portability:�Breakout Questions

	Panel Session
	Thank you for attending!

