FastChip 2.1.2 and the A7 CSoC Family

Agenda

- Install A7 Development Environment
- FastChip Licensing
- Building an A7 Project with FastChip
 - Whirlwind tour with a few stops at points of interest
 - Address allocation
 - Timing-driven Bind

System Requirements

- Pentium-class processor
- Windows 98, 2000, ME, and NT
 - Non-U.S. versions require international FastChip
 - No Windows 95 support
- 192 MB of RAM
 - Highly, high recommend 256 MB
 - FastChip, FDL both use 128 MB with virtual machine

System Requirements (cont'd)

- Internet Explorer 5.0 or later
- HTML Help 1.21
- Adobe Acrobat 3.01 or later
- Optional Cygwin Make utilities for command-line automation
- Available in /ThirdParty directory on CD-ROM

What's In the Box?

- FastChip 2.1.2 CD-ROM
- visionPROBE II JTAG download/debug cable
- visionCLICK CD-ROM
 - Version 7.6A with patch today
 - Version 7.7 at production
- WindRiver Diab Compiler CD-ROM

Installation Logistics

- Use Diab and visionCLICK CD-ROMs from the A7 Starter Kit box
- Use FastChip CD-ROM hand-out
- WARNING! Your virus checker may flag *.tar and *.gzip files

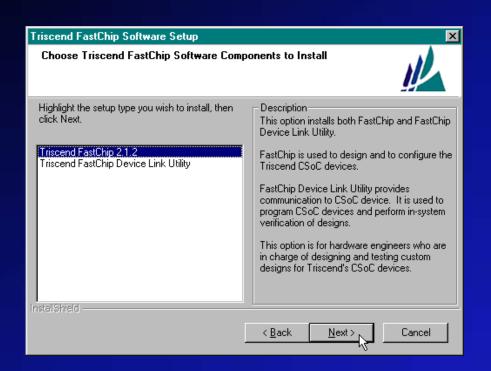
Installing FastChip 2.1.2

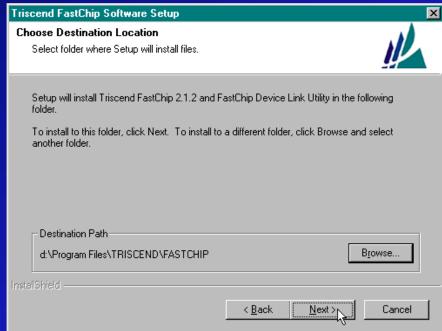
- Plug it in and it works!
- Be sure to update the Keil DLLs in you use the E5 CSoC Family
- FastChip Device Link (FDL) utility can be installed as a stand-alone application

Installing FastChip 2.1.2 (a)

Read welcome. Click Next >.

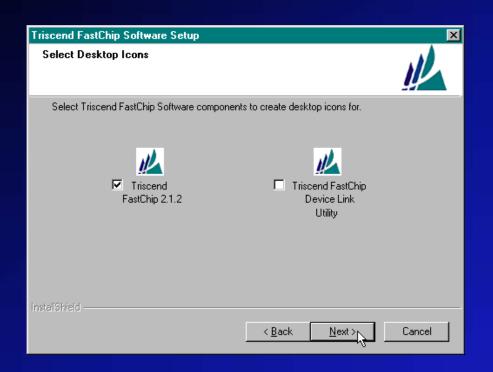
Read license. Click | Agree.

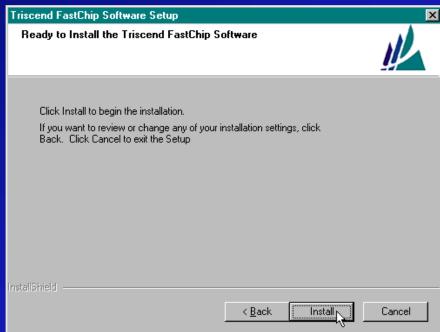



Start with a Clean Slate

- FC 2.1.1, rename the FastChip directory
 - Keep it around for customer support reasons
- Uninstall Diab, visionCLICK
- Delete /diab and /Estii directories

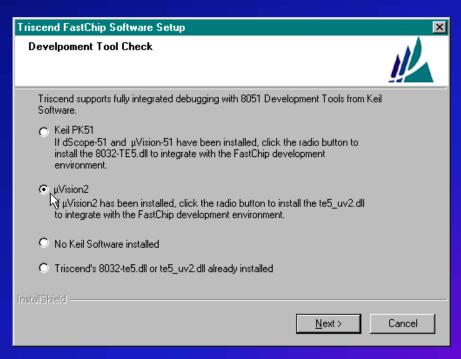
Installing FastChip 2.1.2 (b)




Installing FastChip 2.1.2 also installs FastChip Device Link. Click Next >.

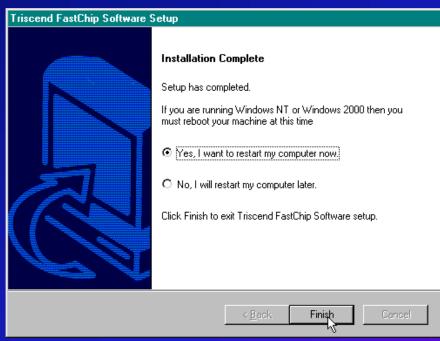
Choose installation drive and directory. Click Next >.

Installing FastChip 2.1.2 (c)


Select desktop icons, if any. Click Next >.

Ready to install. Click Install.

Installing FastChip 2.1.2 (d)



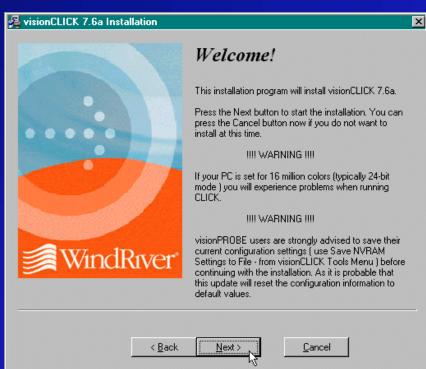
FastChip installation complete! Click OK to install third-party support software. No A7-specific options. Be sure to install Keil DLLs if using E5. Click Next >.

Installing FastChip 2.1.2 (e)

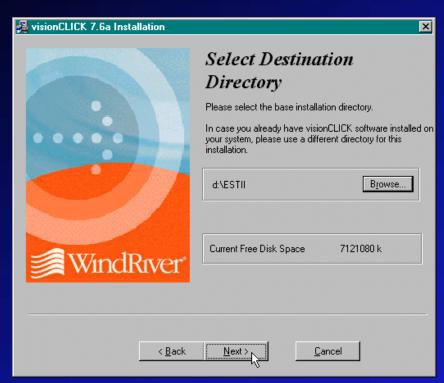
Locate the proper installation directory based on your previous selections. Click Next >.

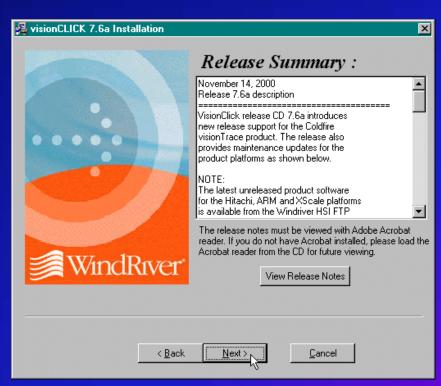
Third-party installation complete. Reboot before using FastChip. Click Finish.

Installing visionCLICK


- visionCLICK software required to use visionPROBE II cable
- Probably the most difficult part of installation

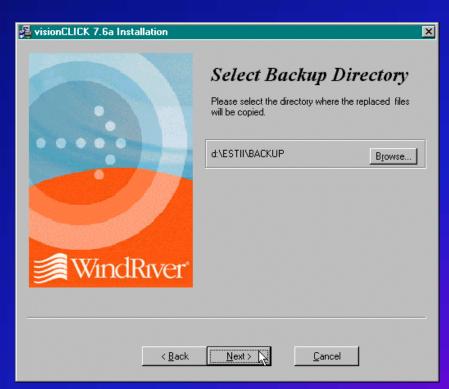
Installing visionCLICK (a)


If CD-ROM auto-runs, visionCLICK displays startup screen. Click Install visionCLICK.


Read important welcome screen. Click Next >.

Installing visionCLICK (b)

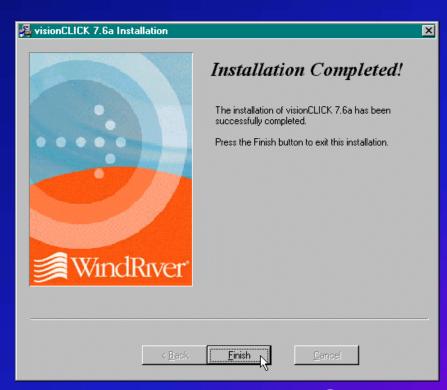
Select installation directory. Click Next >.


Scroll through release notes. Click Next >.

Installing visionCLICK (c)

If installing visionCLICK for the first time, select No backup. Click Next >.

If updating visionClick, select backup directory.


Click Next >.

Installing visionCLICK (d)

Ready to install. Click Next >.

Installation complete. Click Finish.

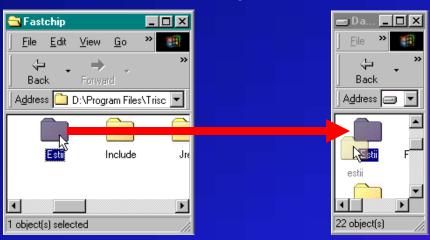
Installing visionCLICK (e)

From the visionCLICK startup screen, click Exit.

Install visionCLICK Patch

This step not required for FastChip 2.1.2 production release. Overwrite with visionCLICK update, Arm_Patch_For_VisionClick.exe

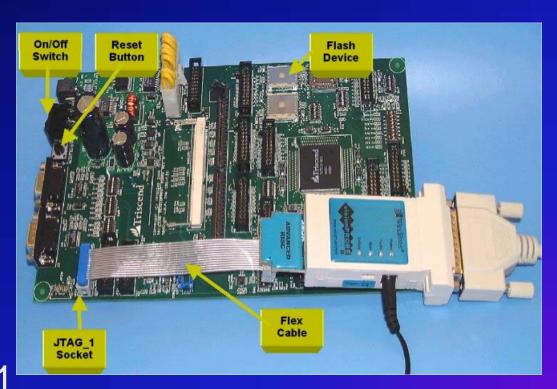
Click Unzip.


Click Close.

This step updates visionCLICK to support the ARM7 and Triscend A7.

Copy FastChip \estii Directory

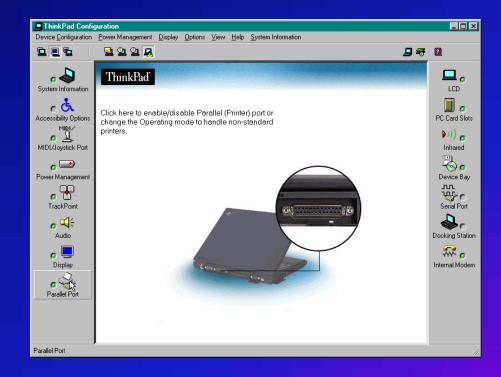
- Contains Triscend-specific configuration data
- Copy <FastChip>\estii directory from FastChip installation directory to \Estii installation directory UPDATE


visionCLICK Software Limitations

- visionPROBE II cable does not require a license (unlimited use)
- A7 Starter Kit ships with an evaluation version of visionCLICK
- visionCLICK limited to 200 debugging sessions
- Full version of visionCLICK from WindRiver for additional \$3,700

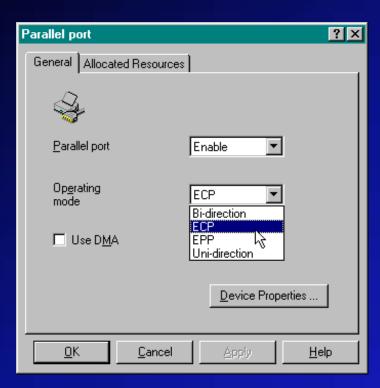
Installing visionPROBE (a)

- Connect parallel cable
- Connect flexible header to visionPROBE
- Connect power supply to visionPROBE
- Connect to JTAG_1 socket on A7 Eval. Board
- Apply power to all


Installing visionPROBE (b)

- Parallel port must be configured and enabled as Extended Capabilities Port (ECP)
- visionPROBE comdll.cfg must specify I/O address and interrupt request number
- Use visionPROBE's VPTest.exe to verify proper connections

ECP Mode on Thinkpad (a)



Open the Windows Control Panel. Double-click ThinkPad Configuration.

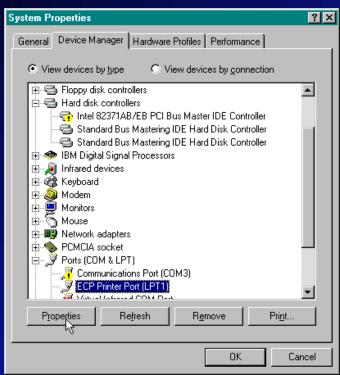
Click Parallel Port.

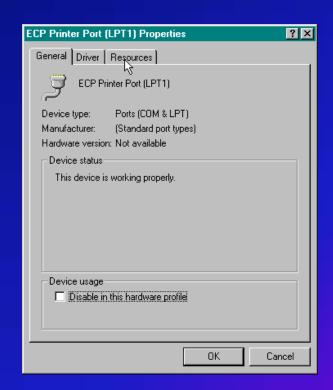
ECP Mode on Thinkpad (b)

Enable parallel port. Select ECP mode.

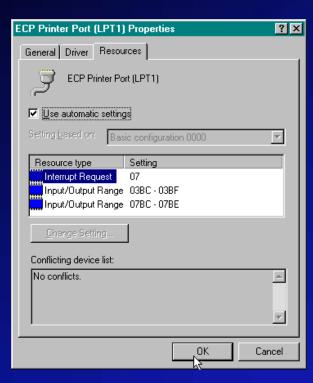
Click OK. May require rebooting your computer.

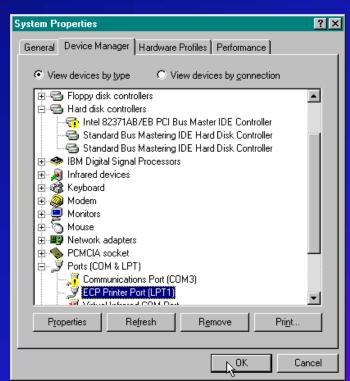
Determine ECP Settings (a)


Open the Windows Control Panel. Double-click System.

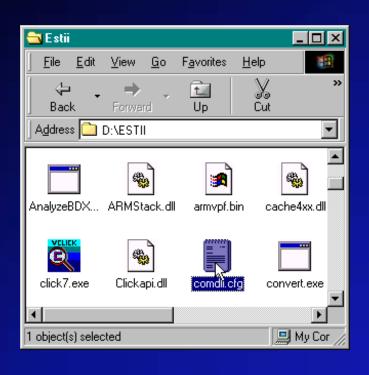

Click Device Manager tab.

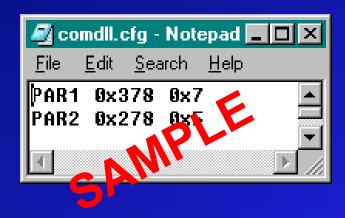
Determine ECP Settings (b)


Find and select ECP Printer Port. Click Properties.


Click Resources tab.

Determine ECP Settings (c)


Record settings for Interrupt Request and Input/Output Range. Click OK.



Click OK.

Configure visionPROBE Communications

Open **comdll.cfg** file in the **/Estii** directory.

Modify entries based on your computer's ECP settings.

Save the file.

Testing visionPROBE using VPTest.exe (a)

VPTest Application

File Help

Connect board, cable, supplies.

Double-click VPTest.exe in the /Estii directory.

Check that all port tests PASSED!. Click **START** to begin probe diagnostics.

Testing visionPROBE using VPTest.exe (b)

Check that all diagnostic tests PASSED!. Click **EXIT!**.

DriverX Driver Already ConfiguredP.	ASSED	
DriverX Driver Already ConfiguredP.	ASSED	
Connecting to ECPRegs EntryP.	ASSED	
Mapping ECPRegs EntryP.	ASSED	
Connecting to SPPRegs Entry(PAR1)P.	ASSED	
Mapping SPPRegs EntryP.	ASSED	
Testing ECP PortF.	AILED	
ECP Control Register Bits 0 & 1 != 0x2.	1/2	
ECP Control Register Value = 0xff **	M	
!! Unable to Use visionPROBE Without a Valid ECP	Port	!!

What if it fails?

Mostly likely cause is ECP port related.

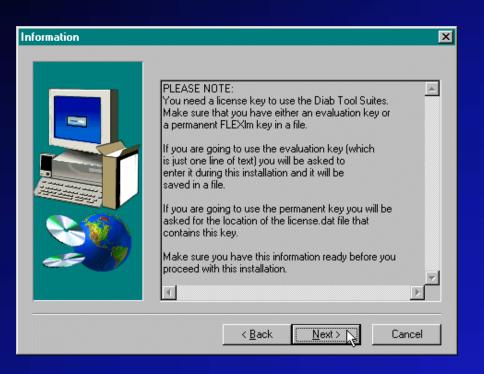
Recheck your setup.

Use the visionPROBE II


Hardware Installation Guide.

Remove and re-apply power to visionPROBE!

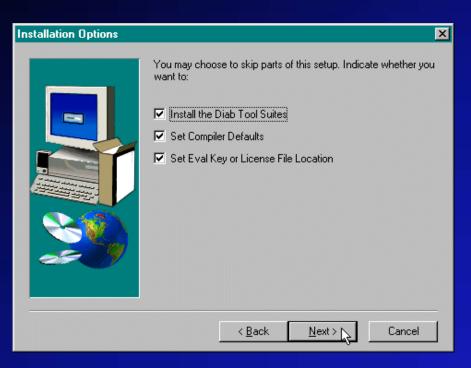
Installing Diab Compiler (a)

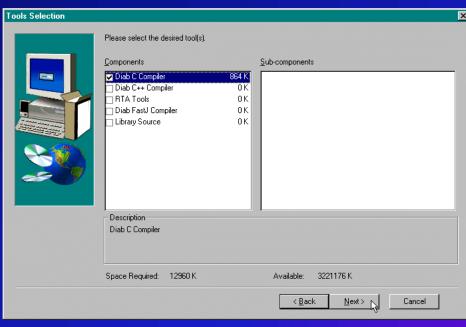


Read the welcome screen. Click Next >.

Read the license. Click Yes to accept the terms.

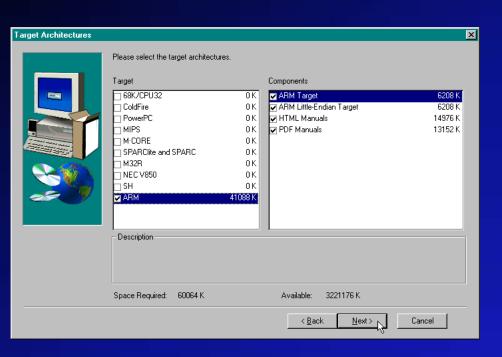
Installing Diab Compiler (b)

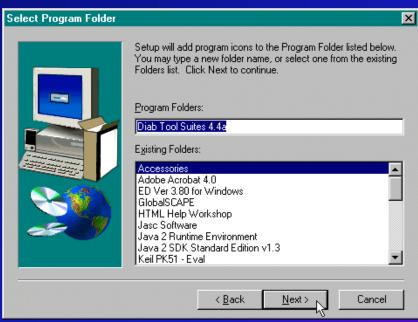



Read the information about the FLEXIm license key. Click Next >.

Select an installation directory. Click Next >.

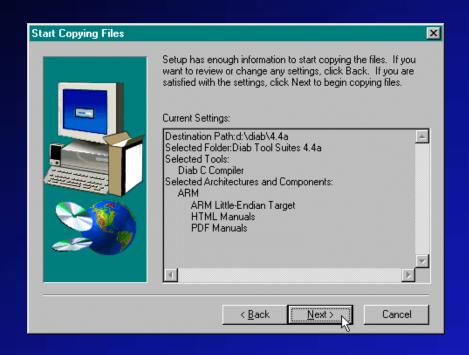
Installing Diab Compiler (c)

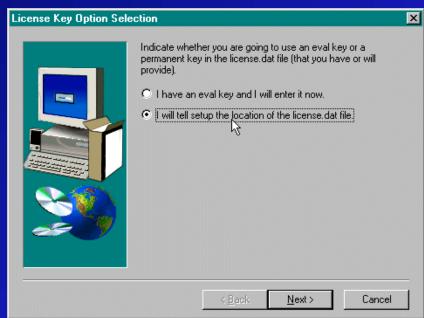



Select all options. Click Next >.

Select the Diab C Compiler option. Click Next >.

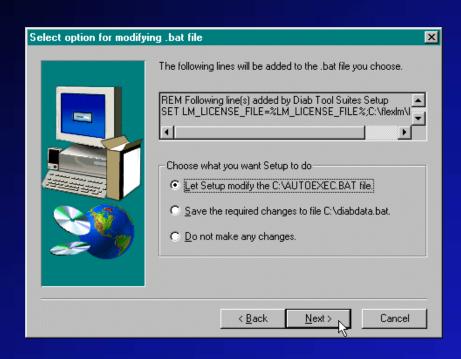
Installing Diab Compiler (d)

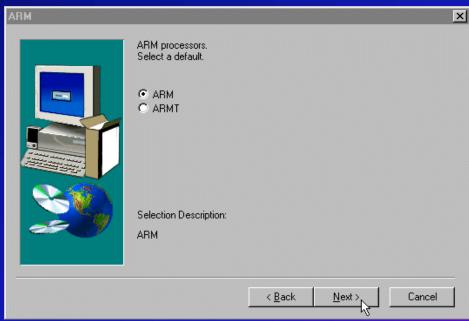



Select all options. Click Next >.

Select a program Folder. Click Next >.

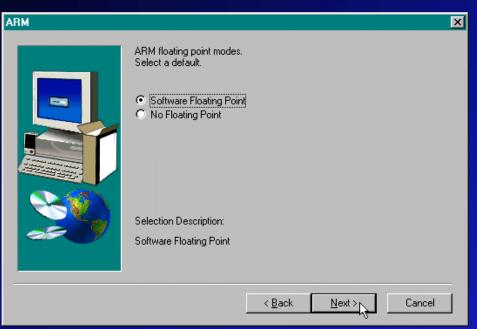
Installing Diab Compiler (e)

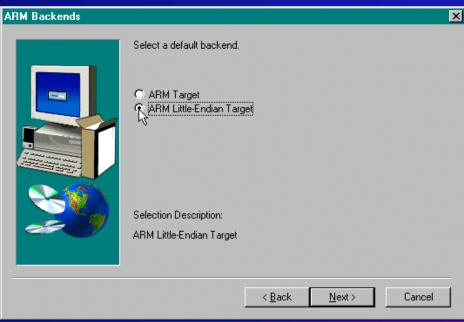

MISSED SCREEN SHO


Review the installation options. Click Next >.

Select I will tell setup
Click Next >.

Installing Diab Compiler (f)




Choose Let Setup modify
Click Next >.

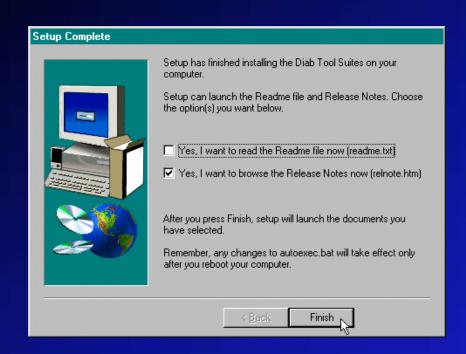
Select ARM. Click Next >.

Installing Diab Compiler (g)

Choose Software Floating Point. Click Next >.

Select ARM Little-Endian Target. Click Next >.

Installing Diab Compiler (h)



Choose cross. Click Next >.

If other compiler options are desired, use the –t option. Click Next >.

Installing Diab Compiler (i)

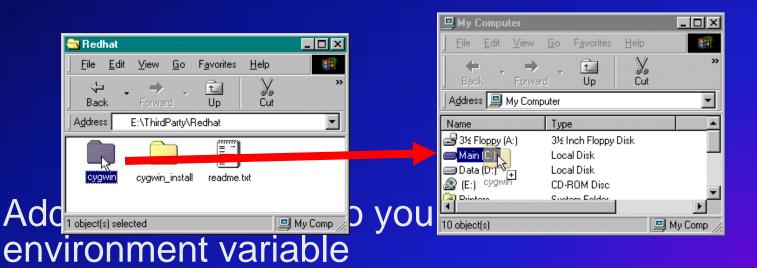
All settings defined. Click Finish to complete installation.

Diab Compiler Evaluation

- C/C++ compiler, assembler
- 45-day evaluation version shipped on CD-ROM
- Uses FLEXIm license manager
 - SET LM_LICENSE_FILE=c:\flexlm\license.dat
- Edit /flexlm/license.dat and enter the following

```
FEATURE DIABEVAL Diab 4.400 28-Feb-2001 0 \ 3CAAB01492B635C8B3E3 HOSTID=DEMO ck=32 SN=temp
```

- Without license ...


 fatal error (dcc:1635): License error:FLEX1m

 error: No such feature exists -5,357:2 ()
- Full version of visionCLICK from WindRiver for additional \$2,200 (C), \$2,400 (C++)

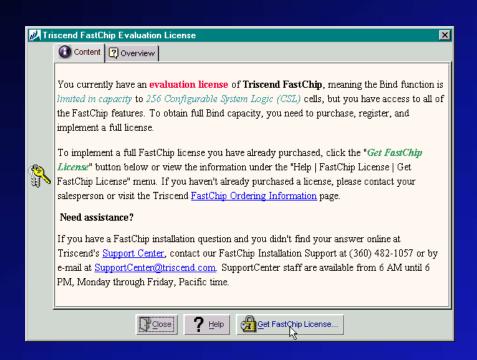
Installing Cygwin

- Cygwin adds support for FastChip command-line Make scripts
- Copy \ThirdParty\Redhat\cygwin directory from FastChip CD-ROM to your C: drive

Installation Complete!

PHEWIII

Now the fun part begins ...



FastChip Licensing

- Full, Licensed Version
 - No restrictions
 - Use any E5 or A7 device
 - Requires use to license FastChip using the Triscend-supplied key
- Evaluation, Un-licensed Version
 - Default mode after installation
 - Use any device, but can only Bind designs with 256 or less CSL cells

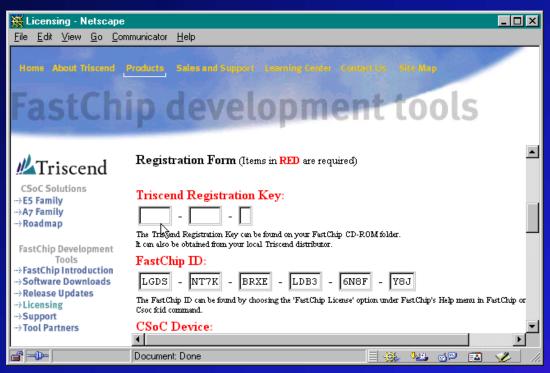
Two Ways to License

Unlicensed version displays a special message every time you start FastChip. Click Get FastChip License.

From within FastChip, click

Help -> FastChip License ->

Get FastChip License.


Connecting to the Triscend License Server

- Licensing is automatic if customer connected to Internet
- Use license number provided with FastChip CE-ROM
- FastChip ID transmitted to Triscend when you click the Get FastChip License button

Enter License Information

- Enter license key from CD-ROM label
- Enter your personal contact information

License Server Response

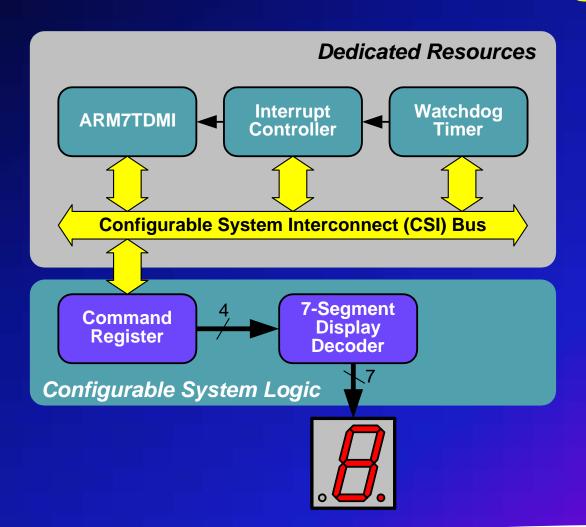
- Triscend replies via E-mail to the address entered
- E-mail contains a small file called
 FCLicense.tjr (about 150 bytes)
- E-mail also describes how to install the *.tjr file.
 - Save the file into FastChip directory
 - <install path>\Triscend\FastChip\

Licensing Woes

- Customer installed *.tjr in wrong directory
- Customer does not have Internet access
- Customer cannot connect to Triscend license server
- Customer's firewall security rejects E-mail attachments
- FAE attempted to create license by clicking Get License on his machine
 - Use www.triscend.com/products/indexfc2lic.html
- Contact SupportCenter@Triscend.com or http://support.triscend.com

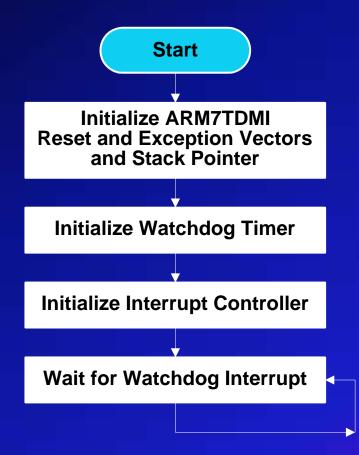
FastChip A7 Tutorial

- 50+ pages of heart-stopping, action-packed, hands-on adventure
- Covers ...
 - FastChip
 - FDL
 - Diab
 - visionCLICK
 - Make files
- Purposely simple (Rio Grande River)
- Soon to be a major motion picture!



FastChip Tutorial Users

- Part 1
 - Create a new design called 'MyFirstA7'
 - Covers FastChip and FDL
 - Download to the A7 Evaluation Board
 - Primarily for hardware engineer
- Part 2
 - Use 'MyFirstA7' created earlier or 'MyDesignA7' from CD-ROM
 - Covers Diab C compiler and visionPROBE software
- Part 3
 - Using FastChip command line and Make files

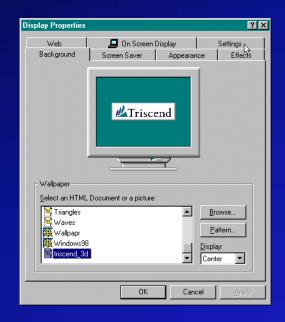


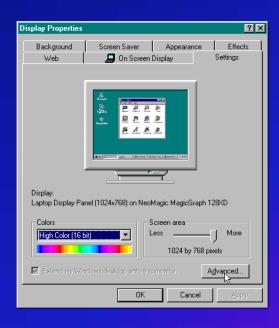
A7 Tutorial CSoC Design

A7 Tutorial 'C' Program



FastChip Display Problem on Thinkpad/NeoMagic


- Small gray boxes appear in FastChip/FDL, corrupting graphics display
- Only on laptops with NeoMagic graphics chipset
- Related to Sun's Java virtual machine
- Next slide describes work-around
- Required each time you start FastChip or FDL


Thinkpad/NeoMagic Workaround (a)

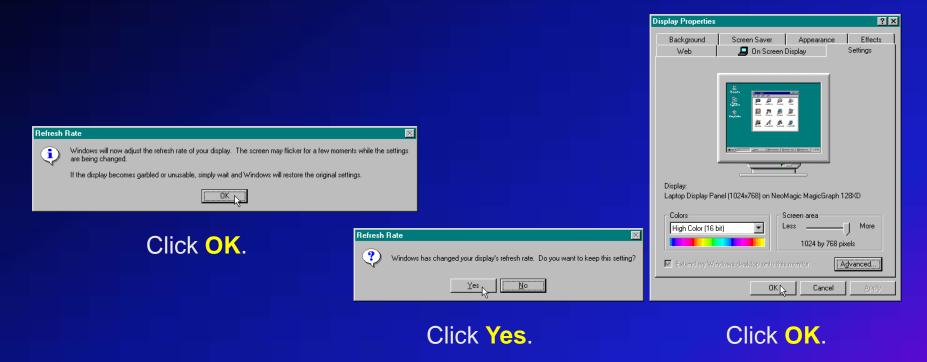
Right click on empty Desktop area. Select Properties.


Click **Settings** tab.

Click Advanced button.

Thinkpad/NeoMagic Workaround (b)

Click Adapter tab.


Select any Refresh rate setting.

Click OK.

Thinkpad/NeoMagic Workaround (c)

Small gray boxes should be gone!

FastChip File Defaults

- By default, FastChip loads the last project
- Useful for most customers
- Not always useful for FAEs

Select Tools > FastChip Options.

FastChip Options.

Uncheck Automatically open ... option. Click OK.

Project Management

- FastChip start-up behavior
- Migrating a FastChip 1999 design
- Create a new project
- Select a target device
- Add project notes
- Examine resources on target device
- Modify FastChip options
- Changing the target device

Miscellaneous Management

- Help
- Triscend menu
- Document directory

FastChip Main Window

- Menu and tool bar
- Dedicated Resources
- CSL Window
- Module Library area
- Resource Estimate
 - Shows pre- or post-Bind resources
- Command Output
- Status Bar
- Control the FastChip layout

Working with Modules

- FastChip module library tree
- Find a module
 - By hierarchy or by list
 - Search capability
- Use online help
- Configure a module
 - Define an address
 - Define connections
- Other module functions
 - Delete, duplicate, export
 - Re-arrange screen layout

New FastChip Modules

- Modules are now architecture specific
 - E5 or A7
- Arithmetic
 - Divider, Multiplier, Square Root
- Serial I/O
 - New SPI, I2C masters
- Communications
 - HDLC
- Encryption
 - DES (EBC and CBC mode)
 - Triple DES

What are Deprecated Modules?

- Some modules have been improved, updated, enhanced
- Old versions remain
 - Maintain compatibility of customer's design
 - Don't fix it if it ain't broke!
- Deprecated modules issue warning message
- All stored in the Deprecated library directory

Working with Connections

- Find an existing connection
 - By hierarchy
 - By name
 - Defining buses (multi-bit connections)
- See connectivity from FastChip main window

Assigning I/O

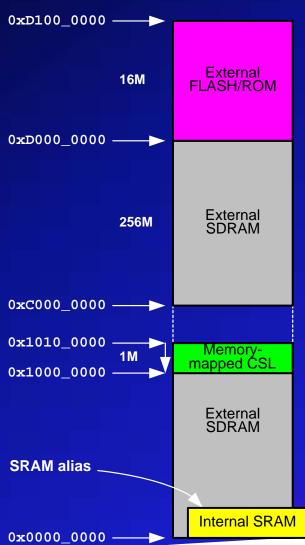
- Define the Memory Interface Unit (MIU)
 - Configure static memory interface (Flash)
 - Configure SDRAM interface
- Assign Programmable I/O (PIO) pins
- Set electrical characteristics
- Settings saved in *.ioc file

Assign 7-Segment PIO

Module¤	Pad·Name¤	Pin∙Number¤
D1≈	D1.SEGA≋	89×
	D1.SEGB≈	90×
	D1.SEGC×	95×
	D1.SEGD≈	96×
	D1.SEGE×	100×
	D1.SEGF×	101×
	D1.SEGG*	102×

Generate a Header File

- Passes register assignments to your compiler
- #include in 'C' source file
- Also include triscend_a7.h header file



Design Rule Check (DRC)

- Verify correctness of design before completing next step
- FastChip executes DRC many times during a design
- Unused sideband signal generate DRC warnings

Default A7 Memory Map

Constraining Addresses

- Define where Selector addresses reside ALLOCATE START=0x1000_0000 SIZE=1M DIRECTION=DOWN;
- Specify address for a specific Selector
 - Requires "FastChip" name
 - See *.al file
 ADDRESS RESULT.CMDREG @ 0x100f_fe00;
- Prohibit a range of addresses
 PROHIBIT START=0x100f_ff00 SIZE=256;
- Saved in *.adc file

What is Bind?

- Analogous to existing design steps
 - Compile/Link/Load for software development
 - Map/Place/Route for ASIC design
- Very compute and memory intensive
- Executes in minutes to hours, depending on ...
 - Computer speed
 - Device size and utilization

What Does Bind Do?

- Automatically assigns, programs
 Selectors
- Maps logic to CSL logic resources
- Optimally places CSL cells, Selectors on device
- Routes signal connections between CSL resources
- Computes static timing for delay paths
- Generate CSL programming file

Bind Effort Levels

- Trade off final design quality with faster Bind execution time
- Three effort levels
 - Minimum: Fastest run time, Moderate results
 - Medium:
 - Maximum: Slowest run time, Best results
- Timing-driven mode

Timing-Driven Bind

- Why timing-driven Bind?
 - Tell Bind your timing requirements
 - Bind attempts to meet your requirements
 - Project report shows any missed requirements
- What are the drawbacks?
 - Significantly slower Bind execution time
 - Current interface is awkward
 - Capabilities are very immature in FC2.1.2

What is Awkward Today?

- Connections are based on a pin list
- The pin names are hierarchically qualified based on the flattened, mapped netlist
 - Info available in *.m file
 - Must run Bind to create *.m file
- Dig through the netlist to find what you need
- Run times can be geologic!

How to Process a Design

- Bind it once
- Save the design
- Open the *.m file
- Look for the desired start and end points
- Define your constraints in the *.tic file
- Run Bind in timing-driven mode
- Generate project report to see results

What Can You Specify? (a)

- *.tic file contains your timing constraints
- CREATE_CLOCK
 - Specify clock net
 - Specify clock period (WARNING: no decimal points allowed. 12.5 ns = 12500 ps
 - Duty cycle
- SET_MAX_DELAY
 - From and To points
 - Worst delay allowed

What Can You Specify? (b)

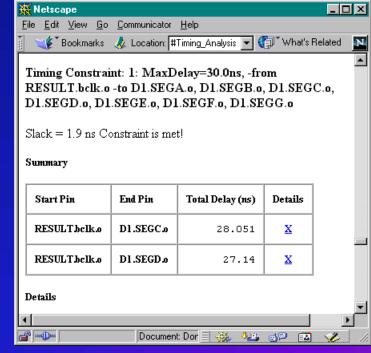
- Hierarchically qualified pin names required for From and To points
- Pin macros make it easier
 - ALL_INPUT_PINS all .i pins of input pads
 - ALL_OUTPUT_PINS all .o pins of output pads
 - ALL_CLOCK_PINS(<clkNet>) all clock pins of registers directly clocked by net <clkNet>
 - ALL_SETUP_PINS(<clkNet>) all non-clock input pins of registers clocked by net <clkNet>
 - ALL_SOURCE_PINS(<Net>) pins that drive the net <Net>
 - ALL_LOAD_PINS(<Net>) pins that are loads on the net <Net>

Try It, You Might Like It

- GOAL: Define maximum clock-tooutput time from BusClock to any output pad at 40 MHz (25 ns period)
- From *.m file
 - net RESULT.clock;
- Create *.tif file constraint
 - set_max_delay 25ns
 -from ALL_CLOCK_PINS(RESULT.clock)
 -to ALL_OUTPUT_PINS

A Slightly Harder Example

- GOAL: Specify delay from RESULT register to 7-Segment LED outputs to 30 ns
- From *.m file
 - busclk RESULT.bclk (.o=RESULT.clock);
 - pad D1.SEGA (.o=D1.sega, ...
- Create *.tif file constraint
 - set_max_delay 30 ns -from RESULT.bclk.o -to D1.SEG*.o



See the Results

Run Bind

Use Timing-Driven mode

- Specify *.tic constraints file
- GenerateProject Report
- Click on Timing Analysis

More on Constraints

- Limited information in online Help
- FastChip_Constraint_Files.pdf in \Docs directory
 - Address constraints
 - Timing constraints
- Somewhat useful today
- Difficult to use today
- May not cover all paths
- May include paths you don't care about

Obtaining Project Information

- Generate Project Report
 - CSL utilization
 - Modules used
 - Connectivity
 - I/O Pinout
 - Address Assignments
 - Timing Analysis (Lite)

Export for Simulation

- Entire design
 - Requires Triscend Bus Functional Model (BFM) to simulate CSI bus traffic
 - More on BFM on Friday
- Individual module
 - Includes parameterization
- Supports popular simulation netlists
 - Verilog
 - VHDL/Vital
 - Can include post-Bind timing

FastChip Device Link (FDL)

- Separate executable from FastChip
- Create a CSoC configuration image
 - CSL personality (Bind bitstream, *.csl)
 - Compiled processor code (.Hex)
 - Output to Triscend *.cfg or standard .Hex file
- Download
- Debug
 - Any memory-mapped register (CPU, Selector, RAM)
 - CSL logic nodes

Why a Separate FDL?

- FastChip 1999 required entire project for download
 - Required high-end machine in lab
 - Exposed entire project
- FDL offers
 - Design security, just ship *.csl or *.hex file
 - Lower system requirements in lab
 - Enhanced debugging interface
 - Low-resource command-line interface

More of FDL

- Debugger uses file created by Bind
 - Cross-reference file (*.xref)
 - Memory address for resources in the design
- FDL Configuration creates its own report file
 - Configuration report file (*.cfr)
 - MIU and configuration register settings
 - Very useful for E5

FDL Exercises

- Create a configuration image for internal SRAM
- Download to internal RAM
- Monitor and control registers and internal resources
- Set breakpoints

FastChip Import

- Allows customer to create custom CSL logic using 3rd party tools
 - Schematics: OrCAD, ViewDraw
 - Synthesis: FPGA Express, Synplicity
- Import Heartbeat module and complete new project
 - Place on pin 103
 - Bind
 - Configure for Flash
 - Download to Flash

Yahoo!

- Your board should now show an incrementing value on the LED!
- Save this design for tomorrow's training!

