WaTriscend

Implementing Secure
Remote Updates using
Triscend E5 Configurable
System-on-Chip Devices

, 2000, v1.00

Abstract:

Application Note (AN-02

Remotely updating embedded equipment in the field via a secure and reliable communications path
reduces maintenance costs and product introduction risks. This capability also provides an additional

revenue stream through cost-effective product upgrades.

The Triscend E5 Configurable System on

Chip (CSoC) device is particularly attractive in downloadable applications because it contains both pro-
grammable hardware and an industry standard microcontroller. Modern cryptography provides power-
ful tools to prevent accidental or malicious installation of incorrect updates via download. This applica-
tion note provides example code that implements secure updates for the Triscend ES5.

Introduction

This application note describes a simple but high-
ly secure programmable download technique for
Triscend's 8-bit E5 CSoC family. The working
software supplied implements the technique on
the Triscend E5 Development Board.

The ability to download new software and pro-
grammable hardware releases to equipment al-
ready deployed in the field provides many advan-
tages for embedded systems manufacturers:

1. Perform product upgrades or correct serious
product design errors easily in the field, with-
out recalling the product.

2. Introduce the product to the market quickly
with a stable, reduced feature set. Update
the product as new features stabilize or as
competitive products appear. This is of par-
ticular value where the product needs to im-
plement a standardized function (e.g. a com-
munications protocol) but some details of the
standard may still be subject to change.

3. Customize products for various markets or
customers after they are shipped.

4., Obtain an additional revenue stream from
software/hardware upgrades. Introduce new
features and deliver them in a cost-effective,
timely fashion.

Sending a field technician to replace boot PROMs
is expensive. Updating a system remotely drasti-
cally reduces upgrade costs. Undeniably, the
ability to economically update equipment in the
field is attractive. However, it is essential that the

system be updated securely and reliably. An in-
correct update may damage the embedded sys-
tem or the equipment it controls. With a conven-
tional non-downloadable embedded system, a
malicious individual requires physical access to
the embedded system in order to change its soft-
ware. Consequently, it is very difficult to attack
more than a small number of systems. A down-
loadable system potentially allows an attacker to
access every product shipped by the manufactur-
er. Fortunately, modern cryptographic technology
can 'harden' the download process to the point
where it no longer provides an easy target to
hackers.

Secure Download Architecture

Implementing secure download on an 8-bit micro-
controller with limited external FLASH memory is
a challenging task. Every byte of memory or pro-
cessor cycle used by the download code is one
less byte or cycle available to the 'real' function of
the embedded system. A 'lightweight' download
technique is essential. Unfortunately, this rules
out a solution based on established Internet stan-
dards such as Secure Sockets Layer (SSL).

Figure 1 shows a simple architecture for secure
download to remote, embedded equipment. The
security of this scheme comes from a shared se-
cret key that is known only to the equipment
manufacturer and is embedded in the equipment
at the time of manufacture.

The three main tasks of the secure download ap-
plication are to:

© 1999-2000 by Triscend Corporation. All rights reserved.

www.triscend.com

AN-02: Implementing Secure Remote Updates using Triscend E5 CSoC Devices

Product Database D
(ID, Secret Key, -
CSoC Initialization)
Initialization Key Web
/ Y Server
File for
Select Correct download
Software > Encrypt >
Configuration
Manufacturer's Facility
Internet

Equipment ID
PC with -~
Internet -
Connection Serial Cable
B
7y Software
Update
User
Initiates
Download

Embedded Equipment

User's Facility

Figure 1. A potential software update architecture leveraging the world-wide web infrastruc-
ture. Simple approaches are possible using traditional phone lines or UARTS.

Manage the non-volatile Flash memory that
stores the currently operating application and
the new image being downloaded.

Implement a cryptographic protocol that pre-
vents unauthorized parties from downloading
to the equipment. The ability to prevent third
parties from copying the image being down-
loaded to the device is another desirable fea-
ture.

Implement a reliable communications me-
chanism to transfer 100K byte files without er-
ror between the PC and the Development
Board.

Managing the Flash Memory

The Triscend E5 development board contains an
AMD29LV002BB 256K-byte Flash memory chip
[3] and a 512K byte SRAM device. The SRAM
device is not used in this application.

The size of the initialization data file for the CSoC
device varies according to the size of the user's
microcontroller code, but is normally more than
64K bytes and less than 100K bytes. Much of
this data initializes the E5's Configurable System
Logic (CSL) matrix. Therefore, it is possible to
store, at most, two complete CSoC images in the
development board's 256K byte Flash memory
chip.

The validity of a downloaded Flash image cannot
be determined until the entire image is available.
There are 40K bytes of on-chip SRAM memory
on the CSoC device, though this is not enough to
buffer a complete download image. There is an
external SRAM device on the development board,
but the goal of this application note is to demon-
strate stand-alone secure updates. Consequent-
ly, the external SRAM is not used. In this applica-
tion, the download image must be immediately
stored to Flash as it is downloaded. Although the
current CSL configuration is loaded into and op-
erating from on-chip RAM memory, its image in

WMuTriscend

OX3FFFF
Segment 7 (64K) 0X30000
X Half 1 (128K)
Segment 6 (64K) 020000
Segment 5 (64K) 0xL0000
Segment 4 (32K) OXBO0O Half 0 (112K)
Segment 3 (8K) OXE000
X
Segment 2 (8K) 0X4000
X
Segment 1 (16K) X000 Startup (16K)
X

Physical Memory Map
Am29LV002BB

Logic Memory Map
For Download Images

Figure 2. Subsequent updates are stored in either Half O or Half 1 in the Flash memory. The
various Flash segments, with varying sizes, complicate the update software little.

Flash memory must not be overwritten by the new
image being downloaded. If the download does
not complete successfully or is rejected by the
security software, the current image must remain
intact in non-volatile memory so that it is still op-
erational after a system reboot.

A FLASH memory has the ability to electrically
erase a region of the device. The AM29LV002BB
memory on the Triscend E5 Development board
is composed of seven such 'segments’ each of
which can be individually erased.

The properties of Flash memory complicate the
implementation of software download:

1. Itis not possible to overwrite a single byte of
Flash memory. Instead, an entire segment,
containing as much as 64K bytes of data,
must be erased.

2. FErasing a segment and writing a byte of
memory require that the Flash device execute
a programming algorithm. While this algo-
rithm is running, the Flash memory is not
available for use by the CSoC. This implies
that the CSoC cannot fetch instructions from
the Flash memory while programming.
Therefore, code that controls the Flash must
execute from the E5's on-chip RAM.

3. The segments within the Flash memory are of
various arbitrary sizes.

The currently operating CSoC configuration must
not be disturbed until the newly downloaded con-

figuration is verified. To guarantee this, two re-
gions capable of holding an entire CSoC configu-
ration are provided in the development board
Flash memory, as shown in Figure 2. These re-
gions (Half 0 and Half 1) alternately store the
download image. When the present CSoC confi-
guration is stored in Half 0, a new download im-
age is saved into Half 1 and vice versa. A third
small region at the beginning of the memory
(Startup) holds a simple bootstrap loader, dis-
cussed later.

Typical E5 Initialization Process

Before discussing how to implement updates, an
overview of the typical E5 initialization process is
helpful. A Triscend E5 CSoC device is initialized
by applying power or by asserting the reset pin,
RST-. During initialization, the 8032 locates and
starts executing a primary initialization routine
located in the ROM embedded within the CSoC
device. This ROM is only used for primary initiali-
zation and is not visible to the user application.
The purpose of the primary initialization routine is
to locate and load the user's initialization data,
called secondary initialization. Based on the logic
levels applied to the VSYS-, SLAVE-, and
A31/PMOD pins, the primary initialization routine
determines where the secondary initialization rou-
tine resides--either in external byte-wide memory,
external serial memory, or internal SRAM. This
application note only considers the case where
secondary initialization code is located in external
Flash.

AN-02: Implementing Secure Remote Updates using Triscend E5 CSoC Devices

External Flash

/A)
Secondary
osLolita The header, secondary
Inlt:%llzrgtrlnon intialization program,
P % gnd CSL clonfigu.ratiﬁ)n
: ; > data are always in the
CsL cogfltguratlon highest 256K of external
Embedded ROM ata memory, aligned to a
within E5 CSoC 16K boundary.
Primary 0) @ Header

initialization >
program

—~---- Aligned to 16K boundary

_—f——

User 8032
application code

Figure 3.
Flash.

The primary initialization routine performs the
steps outlined in Figure 3.

1. The 8032 begins executing the primary initia-
lization code stored in the embedded ROM.
The routine searches the last 256K bytes of
external memory to locate the four-byte
'header' 0x8025A5A9, which is aligned on a
16K-byte boundary. On the E5 development
board, there are only 256K bytes of external
memory and therefore only 16 possible loca-
tions to search. The header marks the be-
ginning of a valid secondary initialization rou-
tine. After locating a valid header, a code
mapper is programmed so that the 8032 can
start executing the secondary initialization
route.

2. The secondary initialization routine then pro-
grams the CSL matrix from the bitstream in-
formation created by FastChip.

3. After programming the CSL matrix, the sec-
ondary initialization program modifies the
code mapper to point to location 0x80_0000,
which is the start of external memory. The
secondary initialization routine then causes
the 8032 to jump to logical address 0x0000,
where the user's 8032 application program
resides. The code mapper redirects this logi-
cal address to physical address 0x80_0000.
Physical address 0x80_0000 then points to
the external Flash. Because only the lower
18 address lines connect to the Flash, physi-

0

In a typical application, only a single initialization image is loaded from external

cal address 0x80_0000 points to the lowest
location within the Flash memory, 0x0_0000.

WHICH ADDRESS WHERE?

Discussing addresses during initialization can be
somewhat confusing because there are several
frames of reference for address spaces, plus redi-
rection through the internal code and data map-
pers, as shown in Figure 4. The 8032 processor
itself has 64K byte address spaces for external
data (XDATA) and program code (CODE). These
16-bit addresses are referred to as 'logical' ad-
dresses.

The on-chip Configurable System Interconnect
(CSI) bus provides a 32-bit address space into
which various resources are mapped. These 32-
bit addresses are referred to as 'physical' ad-
dresses.

External memory appears between 0x80_0000
and OxFF_FFFF on the CSI bus. So, in the ex-
ample above, external memory address 0 (the
start of the Flash chip) is accessed through on-
chip CSI bus address 0x80_0000 which is
mapped by a CSoC code mapper onto 8032 code
space address 0x0000.

Modifying the Initialization Process for
Remote Updates

Supporting remote Flash updates requires some
modifications to the typical E5 initialization
process. Because the CSoC always jumps to
application code at 0x0_0000 in external memory,

WMuTriscend

Physical Ts
8032 0x1_0000 o<
c 0
| 32 = T
16 Logical i cl
0x0000 " o o3
§ Physical g‘%: Flash 0z
§ 0x80_0000 Er'c 0x0_0000 10
Code Mapper - ol>D .
32 =c 18
Triscend E5 CSoC

Figure 4. The 8032's 16-bit logic address is re-mapped to a 32-bit physical address space.

valid code must reside at that location regardless
of whether the updated configuration image is
loaded from Half 0 or Half 1. The code at
0x_0000 must not erased at any point in the
download process. If the CSoC were powered off
or re-initialized while this segment of Flash mem-
ory was erased, the CSoC could no longer boot
correctly when power was restored. Therefore,
the first segment of Flash memory is assigned to
a special startup program, which is not altered by
download. The Startup program modifies the typ-
ical initialization process, as shown in Figure 5.

The Startup routine performs various functions:

Identifies the valid initialization image, and
determines whether the image appears in
Half O or Half 1.

Locates the user's 8032 application code,
which starts at the first location in the valid
half of memory.

Copies the 8032 application code to the E5's
internal SRAM memory. As discussed earli-
er, any code that modifies Flash memory

Embedded ROM
within E5 CSoC

Primary

program

Embedded SRAM
within E5 CSoC

Copy of
User 8032
application
code

initialization |®

External Flash

‘Secondary
initialization
program
+

CSL configuration
data

Header

f

User 8032
application code

Aligned to 16K boundary

Startup Loader

Aligned at HalfO or Half1

0

Figure 5. A modified initialization process supports secure Flash updates.

AN-02: Implementing Secure Remote Updates using Triscend E5 CSoC Devices

8032
MCU

Reset
—> Funcc:‘gloin in P >—

g Triscend E5 CSoC
Reset

Pushbutton
— -

J’ o— RST-

Figure 6. A Triscend E5 CSoC can reset itself using CSL/PIO circuitry.

needs to operate from on chip RAM. Be-
cause the internal SRAM space is limited, on-
ly those functions required during Flash up-
dating need to be copied into SRAM.

= Sets up a code mapper so that the 8032 can
execute code from internal SRAM.

= Jumps to internal SRAM and starts executing
the 8032 application code.

The download application activates a new down-
load image after it is verified cryptographically.
The application then erases the Flash segments
containing the currently operating image. This
operation deletes the header from the corres-
ponding half of Flash memory so that only the
newly downloaded image has a valid header. If
the downloaded image does not verify correctly, it
is immediately erased. Consequently, that half of
memory will not contain a valid header.

A potential security issue exists by writing the
downloaded data to Flash as it arrives. A prob-
lem arises if the embedded system was reset or
lost power after writing the header to Flash, but
before the cryptographic software had verified the
complete download. The loader program might
detect the header in an incomplete or spurious

image and activate it. To prevent this, the soft-
ware reserves the position of the magic marker in
the downloaded image but does not actually write
it to Flash until after the image is cryptographical-
ly checked. All other data in the image is imme-
diately written to the Flash. The software also
checks that there is exactly one header in the
downloaded image.

Activating the Downloaded Image

For most applications, the downloaded software
would activate automatically after installation.
However, the updated image contains CSL pro-
gramming information, which is only loaded after
a full hardware reset. A reset signal from 8032
software or CSL is not sufficient because an ap-
plication reset only resets the 8032 and causes
the 8032 to execute the 'new' software. Unfortu-
nately, an application reset does not force the
CSoC device to reload the CSL with the new con-
figuration. If the new software depends on fea-
tures in the new CSL configuration, which is not
present in the currently loaded CSL configuration,
then this mismatch could cause the system to fail.

vce_1
pieie)
IZE 1 _SPACE 1
SIoE SelfRst pap ok 1
DATA P PIO Q OF
1 OUTREG <
EN CLR _ }A BAD O
| OUTREG_1
GND
GND_1

Figure 7. Self reset circuit using a Selector and one PIO pin, drawn in OrCAD Capture.

WMuTriscend

Download Second

Update via Update via
SPECIAL CASE Serlal P\élrt Serlal P\c/>|rt

Initial Download from
FastChip using Code
Banking Option

Download First

OX3FFFF
Half 1 Half 1 First Half 1
Update
(CountUpAg)
0200000 Initial
Image
(CountUp) Second
Half O Half O Update
0x100000 (CountUp)
OX4000 ot Start Start Start
artu artu artu artu
0xoooo P P P P
ic Memory Map

for ownload [mages

Figure 8.

The Initial Download from FastChip is a special case.

N

Subsequent Updates
Alternate between
Half 0 and Half 1

Subsequent updates are

stored at either Half 0 or Half 1 in Flash memory.

The only sources for a full hardware reset on the
E5 CSoC are a power-on-reset, the external reset
pin on the E5 (RST-), or a JTAG reset. If the
downloaded image must be activated without in-
tervention, then the CSL design must trigger a
hardware reset by connecting a PIO output to the
E5's RST- reset pin via a trace on the printed cir-
cuit board, as shown in Figure 6. The circuitry to
cause a self-reset condition can be as simple as
that shown in Figure 7, which requires a single
Selector and a single PIO pin. Normally, the PIO
output is floating or high-impedance. This is so
that other devices can connect to the E5's RST-
pin without contention. When the 8032 writes to
the symbolic address "SelfReset," the Selector's
WRSEL output is asserted, causing the PIO out-
put flip-flop to load a logic High. This, in turn,
enables the output, which drives a logic Low on
the pin. This logic Low forces a device-wide re-
set. When the E5 begins to re-initialize, the PIO
output is forced to high-impedance, de-asserting
the RST-. The output flip-flop is also loaded with
zero, clearing its output and disabling the PIO.

On the development board, however, there is no
trace from any of the PIO pins to the RST- pins.
Therefore, after successfully downloading an im-
age, press the reset button on the development

board or cycle the power to the board to activate
the new image.

Initial Configuration

The initial configuration is downloaded to Flash
memory using FastChip and the E5's JTAG inter-
face. This configuration contains two indepen-
dent 8032 programs, the Startup program and the
user application, as well as the CSL configuration
information. FastChip loads multiple .Hex files as
8032 code segments using the Bank Switching
option available in the FastChip Download menu.
One complication is that FastChip locates these
files on 64K boundaries. The first .Hex file is
loaded at address 0x00000 and the second at
address 0x10000 (the next 64K byte boundary).
For this application, however, it would be better if
the second .Hex were loaded at 0x04000, which
is the beginning of Half 0 in the Flash memory
map. A large CSoC image starting at 0x10000
could overlap the beginning of Half 1 of the mem-
ory. Unfortunately, the FastChip 1999 provides
no means to more precisely locate the .Hex file in
Flash.

AN-02: Implementing Secure Remote Updates using Triscend E5 CSoC Devices

There are two ways of addressing this problem:

1. A custom program could process the .Hex file
and move the configuration to 0x04000 prior
to download.

2. The Startup program can recognize user
code starting at 0x10000 as a special case
and call the correct address.

This second and simpler approach is used in the
demonstration application. In operation, the
download function deletes a portion of the initial
configuration already stored in Flash. This hap-
pens as the download function clears Half 1 of the
memory, preparing to store the downloaded im-
age. Fortunately, this does prevent the initial con-
figuration code from operating because it is co-
pied into the CSoC's on-chip RAM. However, it
means that at least one software update must
take place before the CSoC is ever reset or be-
fore the product is shipped to a customer. Oth-
erwise, there would not be a complete image in
the Flash memory. Consequently, the initial con-
figuration serves merely as a temporary
'bootstrap’ until the first download. After a suc-
cessful first download, the Flash is configured
correctly for secure updates.

Figure 8 shows graphically how the initial configu-
ration and subsequent updates are loaded into
Flash.

An attractive side effect of this technique is that
all products could have the same initial configura-
tion loaded during board assembly. Then, using
software download, each product is personalized
with a unique secret cryptographic key before
shipping them to customers. The initial configura-
tion key used during board assembly does not
have to be secret because it will be changed by
the first software download, which occurs before
product shipment.

Cryptographic Securit

The primary purpose of the software download
cryptographic security is to prevent people, other
than the equipment manufacturer, who do not
have physical access to the embedded system,
from changing its software configuration. A sec-
ondary purpose is to protect the software from
being copied in transit between the manufacturer
and the equipment user.

If someone has physical access to the equipment,
that person could potentially determine the secret
key by accessing the Flash memory in the

equipment that holds its program. However, if
they have this level of access, they could also
simply reprogram the Flash memory to install any
software they liked. Determining the secret key
for one piece of equipment gives no information
about the key for other units. Therefore, the fact
that the key could be determined by opening the
box and reading out the Flash memory does not
constitute a serious additional vulnerability com-
pared with non-downloadable systems.

If securing the system against attacks from
people with physical access is an issue, then
tamper-proofing techniques must be used. The
Triscend CSoC 'secure' battery backed mode
might be of benefit in this context. Tamper proof-
ing is outside the scope of this application note.

The shared secret key scheme has the property
that only the manufacturer can create valid down-
load files for the embedded system. Unlike the
secure-applet technology used on web browsers,
it is not possible to download third party software
securely. Secure applet protocols require public-
key cryptography and are considered too complex
to implement on an 8-bit microcontroller.

The shared-secret key scheme implemented here
uses the Data Encryption Standard (DES) which
is a public domain, standardized algorithm. Triple
DES is used in Cipher Block Chaining (CBC)
mode as the underlying cipher. This provides
extremely strong cryptographic protection. Re-
cently it was reported that single DES was suc-
cessfully 'cracked' using a large number of ma-
chines on the Internet to search the key space.
Triple DES uses a 168-bit key compared with sin-
gle DES's 56-bit key. The best known attack on
Triple DES requires 2°° times more computation
than cracking single-DES. Triple-DES is widely
used for high-security applications.

While Triple DES provides excellent security
there are two reasons why it may be desired to
'fall back' to single (56 bit) DES.

1. If the product is exported outside the United
States, using 56 bit single DES will make it
easier to obtain export clearance.

2. The decryption time is the limiting factor on
the speed of software download. Single DES
will run approximately three times faster than
triple-DES.

Although single DES has been cracked, the
amount of effort required to do so is large and
single DES may provide more than adequate se-
curity for many applications.

WMuTriscend

Initial
Value (IV

Symmetric E..---E
Cipher

Figure 9. Cipher Block Chaining (CBC) Mode.

The Cipher Block Chaining mode of DES, shown
in Figure 9, has two important properties in this
application:

1. The ciphertext for a 64 bit block in the file de-
pends on the corresponding plaintext block
and all previous plaintext blocks and a ran-
domly chosen Initial Value (V). This ensures
that a bitstream file encrypted on two sepa-
rate occasions will result in completely differ-
ent ciphertext.

2. The last ciphertext block can be encrypted
again and used as a Message Authentication
Code (MAC). If this block decrypts to the ex-
pected value, then the entire message has
been transmitted correctly. Since computing
the MAC involves knowledge of the secret
key, an attacker cannot compute a valid MAC
for his own download file.

This description of the cryptographic software is
relatively brief because the topic is covered else-
where. Reference [1] is an excellent practical
source on cryptographic algorithms.

In order for the shared secret key scheme to work
correctly, the same secret key used to encrypt the
download image is also stored in the embedded
equipment. Each unit of embedded equipment
should have a unique secret key.

The demonstration software simply encodes the
keys as constant arrays in the cryptographic
code, which is adequate for evaluation purposes.
However, in a real deployment, mechanisms
would ensure that downloads are encrypted with
the correct key and would customize the down-
loaded binaries to contain the correct secret key.
These key-management utility programs are
beyond the scope of this application note.

Communications Protocol

Download speed, while important, is not critical
because software updates occur relatively infre-
guently. There are, however, several require-
ments for the serial communications protocol be-
tween the PC and the embedded system.

1. It must be able to transfer large (~100K byte)
files reliably. Unless some kind of error cor-
rection is provided, almost all downloads are
likely to fail.

2. It must supply data to the decryption software
in the correct order. There is insufficient
memory available within the E5 CSoC to buf-
fer a complete download image prior to de-
cryption using Cipher Block Chaining (CBC).
With CBC, one 64-bit word of cipher text can-
not be decrypted until the previous word has
been decrypted. This constraint rules out
'‘pure’ datagram protocols such as UDP [2].

3. The application software must be able to pre-
vent new data from arriving while it decrypts
the previous packet. Decryption time is the
bottleneck on download speed.

4. The communications protocol must have a
small code footprint because it shares the li-
mited on chip RAM with the user application,
the cryptographic code and the flash man-
agement code.

Because of the constraints on code size, the
communications interface avoids a standard
TCP/IP protocol stack. Instead, the application
uses an ad-hoc packet-based mechanism that
works effectively over a serial cable between a
host PC and the development board. The com-
munications code is separate from the remainder
of the application code. If required, the communi-
cations code could be replaced with a TCP/IP
stack.

The download code uses a packet-based me-
chanism to transmit the image. Packets are bi-
nary data framed using the mechanism defined

AN-02: Implementing Secure Remote Updates using Triscend E5 CSoC Devices

for Serial Line IP (SLIP) [2]. The packets contain
a length count, a checksum and data. If the
checksum is incorrect, a Negative Acknowledge
(NAK) character is sent back to the PC and the
packet is re-transmitted. If the checksum is cor-
rect, the packet is decrypted and stored in Flash
memory. After decryption is complete, an ac-
knowledge character (ACK) is sent enabling
transfer of the next packet. If the message au-
thentication code (MAC) on an entire download
image is incorrect, then a Cancel character (CAN)
is sent indicating that the software will not be acti-
vated. Otherwise, the last packet is acknowl-
edged with End of Text (ETX) indicating that the
download will be activated. After receiving a cor-
rect download image, the download application is
disabled but the 'user' task continues to execute.

The Software

Application Note Design Files and
Software Source Code

The various files for this application note are
available from the Triscend web site as a com-
pressed archive file.

www . triscend.com/app_notes/an02.zip

7 CountUp FastChip project
CountUp.c Keil 'C' program for design
7 CountUpAgain FastChip project
B CountUpAgain.c Keil 'C' program for design
7 Download Keil 'C' project
download.c Top-level C file
datagram.c Serial comm. protocol
des.c DES decryption
Bdecrypt.c Converts decrypted data into
CSoC image
install.c Saves downloaded data to
Flash and transfers control to
new image
nvdata.c Low-level Flash access
Bserial.c Interrupt-controlled UART in-
terface
7 Startup Keil 'C' project
Startup.c Top-level
Nvdata.c Low-level Flash access

BJump2Rom.a51 Low-level code to activate on-

chip RAM

I~ des_pc Microsoft C++ project

Edownload.c
Breadhex.c

Top-level C++ file

Reads Intel Hex file and stores
as large array

Application level data commu-
nications and DES cipher block
chaining (CBC) mode

Bencrypt.c

des.c Single and triple DES
datagram.c Serial comm. protocol
—Debug Contains compiled executable

and debugged designs for
download

Limitations and Restrictions

This application design and associated software
is intended as a demonstration only. Triscend
Corporation does not make any representation or
warranty regarding this design, the associated
software, or any item based on this design. Tris-
cend disclaims all express and implied warran-
ties, including but not limited to the implied fitness
of this design for a particular purpose and free-
dom from infringement.

Without limiting the generality of the foregoing,
Triscend does not make any warranty of any kind
that any item developed based on this design, or
any portion of it, will not infringe any copyright,
patent, trade secret or other intellectual property
right of any person or entity in any country. It is
the responsibility of the user to seek licenses for
such intellectual property rights were applicable.
Neither Triscend nor its agents shall be liable for
any damages arising out of or concerning the use
of the design, including liability for lost profit,
business interruption, or any other damages
whatsoever.

PC Software

The PC software has two main functions. It en-
crypts the downloaded file and transfers it over
the serial interface to the development board. In
an actual deployment, encryption is performed at
the manufacturer's facility and only the download
program would run on the user's PC. However,
during development it is convenient to package
the functions together in a single program.

The software is supplied as a Microsoft C++
project and has been tested under Windows NT
4.0, service pack 5 (SP5). It uses the COM2: port
on the host PC. If this port is not available, the
source code must be edited and recompiled.

Bootstrap Loader (Startup)

The bootstrap loader is stored in the first segment
of the FLASH memory using JTAG download
from FastChip. The loader program locates the

WMuTriscend

user application resident in Flash memory and
loads it into CSoC on-chip SRAM. It then passes
control to the user application, now resident in on-
chip RAM.

The Bootstrap loader is supplied as a Keil C
project.

Download Code (Download)

The download code is supplied as a library, which
must be linked to the user's application code.
The download code continuously monitors the
8032 serial interface and downloads any file that
appears.

The download code is supplied as a Keil C project
and uses the RTX-51 tiny real-time operating sys-
tem bundled with Keil C. The download code
operates as a task under RTX-51. If the user ap-
plication has stringent real time constraints and
must remain active during image download, then
use RTX-51 tiny to limit the amount of processing
cycles available to the download function. The
download code is only activated when characters
are sent to the on-chip UART, so it normally will
not steal processor cycles from the user applica-
tion.

The download application is too large to compile
with the restricted evaluation version of Keil C
supplied on the Triscend FastChip CD-ROM,
which is limited to 2K bytes.

The Demonstration Programs

To illustrate the concepts of remotely updating a
product via download, two variations of a simple
application are provided.

1. CountUp — uses the timer function of RTX-
51 and a seven-segment decoder design built
in CSL logic to display a count value on the
development board LED displays.

CountUpAgain — Implements a counter like
the CountUp design, but increments the dis-
play by a four-bit number entered using the
top four switches on DIP switch S1. This de-

sign has additional CSL components to inter-
face to the DIP switch and slightly different
8032 code from CountUp.

Correctly swapping between these designs re-
quires that both the CSL logic and the 8032 code
be updated.

These demonstration designs are provided as
FastChip 1999 projects and should be copied to
your FastChip projects directory. The corres-
ponding Keil C projects are also within the Fast-
Chip project directory.

Running the Demonstration

The Demonstration

As described earlier, the demonstration uses two
simple applications that run on the development
board:

1. The first application, CountUp, simply counts

continuously on the seven segment displays.

The second application, CountUpAgain,
counts on the seven segment displays but in-
crements the count by a 4-bit number entered
on the DIP switch S1, switches 1 through 4.

The demonstration has four stages:

1. Install the initial image containing the Startup
loader and the CountUp application to the
on-board Flash via JTAG using FastChip's

Download function.

2. Replace the CountUp application with Coun-
tUpAgain using secure software download.

3. Replace CountUpAgain with CountUp using
secure software download.

4. Change the key used for encryption on the

PC and verify that the downloaded image is
rejected.

Table 1. Triscend E5 Development Board jumper settings for Flash download.

JP2 JP4 JP14 JP17
SRAM Flash Reset Serial PROM
HlI HI
CE CE ON/OFF

11

AN-02: Implementing Secure Remote Updates using Triscend E5 CSoC Devices

Setting up the Development board

The Triscend development board is described in
detail in reference [5]. A quick checklist is pro-
vided:

1. The board power supply must be set up ac-
cording to the instructions in [5]. Positions
A31, VSYS and SLAVEB of DIP switch S2
must be in the open (HI) position. Set jumper
per Table 1, JP4 to CE, enabling Flash mem-
ory. Set jumpers JP2 and JP17 to disable
SRAM and serial memory respectively.

2. Use the FastChip I/O editor to route from the
UART RxD signal to pin 145 and the TxD
signal to pin 147, as shown in Figure 10.
This step is already performed in the example
projects.

3. Set clock selector jumper, JP16, to X2, se-
lecting the 25 MHz oscillator chip. If the oscil-
lator chip frequency is not 25 MHz, modify ti-
mer values in the example software appro-
priately. In FastChip, configure the 'Clocks'
dedicated resource to select 'Clock Input to
XTAL/BCLK', as shown in Figure 11. This
step is already performed in the example
projects.

4. In FastChip, configure the 'MIU' dedicated
resource so that the Memory Interface Unit
addresses 256K bytes of external memory.
This step is already performed in the example
projects.

5. Connect a 9-pin DB9 male-to-female serial
cable between the PC serial port COM2 and
the development board. The board interface
looks like a Modem (DCE) so a normal mod-

Figure 10. Place the UART TxD signal on pin

147. Place the RxD signal on pin
145.

em cable, not a null-modem cable, is re-
quired. Most PC modem cables have a DB-9
connector on the PC end and a DB-25 at the
Modem end. Using this type of cable also re-
quires a DB25-to-DB9 converter plug. The
development board does not support hard-
ware CTS/RTS handshaking, so if you make
up cables by hand only, the receive/transmit
data and power/ground wires need to be
connected.

The PC software is set up to use COM2. If
you wish to use a different communications
port, then modify the source file (datagram.c)
and recompile.

The JTAG download interface is required to
download the initial software configuration.

Triscend FaztChip: Module - Clock Control [Clocks]

~Properties

1]

-Bus Clock Source ?|=| |
a rlnternil ring oscillater |

Clock input to XTALIBCLK

Frequency (MHz)

|25.00 |

@ |—Cr\tstll between XTALIN, XTAL e

%Appl}rl / DKl XCancel

? Help

Figure 11. Configure the Bus Clock Source for BCLK and set the frequency to 25.00 MHz.

12

Installing the Software

The two CSoC designs must be installed in the
Projects directory under the FastChip installa-
tion path. Simply copy the directories across.

Creating the Initial Image

The initial image is downloaded to the devel-
opment board Flash memory through the JTAG
cable. It contains both the startup code and
the application code. It is created as follows:

1. Open the CountUp project in FastChip.

2. Using the FastChip Download function,
select 'Direct Program', 'Flash Memory'
and 'AM29LV002BB-120" as the part
name. Select 'Use Bank Switching'.
Load Bank 0 with the 'Startup.hex' file
from the Startup project. Load Bank 1 with
the 'CountUp.hex' file created by Keil C by
building the CountUp project in the current
directory. These options are shown in
Figure 12.

3. Click OK to program the on-board Flash
EPROM via JTAG. The process might
take a few minutes while FastChip erases
and then programs the Flash.

After downloading the files, you will see the two
seven-segment LEDs count continuously.

Downloading the First Update

Create a new hex file to download to and up-
date the development board

1. Open the CountUpAgain project in Fast-
Chip.

2. On the Download menu, deselect 'Use
Bank Switching'. Select the hex file
'‘CountAg.hex' created by building the Keil
C project in the current directory. Select
'Parallel EPROM' as the memory device,
'AM27C020-200' as the part name, and
'‘Generate Hex File'. Save the resulting file
as 'CountUpAgainimage.hex'. These
options are shown in Figure 13.

3. Click OK to generate a hex file containing
the full 8032 code and CSL configuration.

To download the new update to the board:

1. Run the program des pc.exe (built from
the Microsoft C project) in the CountUpA-
gain directory.

des_pc CountUpAgainlmage.hex

2. When the PC reports a successful down-
load, reset the development board by
pressing the reset button. This starts up
the updated hardware and software.

Try various values of the top four switches of
DIP switch S1 and see the counter increment
by various amounts. Initially, the DIP switch
may be set to O so the counter may not incre-
ment until you change its value.

Downloading the Second Update

Create a complete image binary in Project
CountUp as you did for project
CountUpAgain, the first update. Do not
enable bank switching as you did when
creating the initial image. Use CountUp.hex
as the application code file. Save the result in
CountUplmage.hex. The options are shown
in Figure 14.

Download in the same way and after reset the
board when complete. The two LED displays
increment by one, regardless of DIP switch S1.

Cryptographic Verification

To prove that the cryptographic verification is
working, change the key used by the PC to
encrypt the downloaded update image. The
key is contained in the routine des3_ede in file
DES.c. Change one of the keys keyA, keyB or
keyC, then rebuild pc_des.

Note that KeyA==KeyB==KeyC at present,
which causes the triple DES routine to imple-
ment single DES encryption. The download
program on the development board is also set
for single-DES encryption at present to reduce
download time.

Try downloading again and you will see that
the download is rejected.

© 1999-2000 by Triscend Corporation. All rights reserved.

www.triscend.com

AN-02: Implementing Secure Remote Updates using Triscend E5 CSoC Devices

Trizcend FastChip: Download

¢«

—é@hpliclﬁun Object Code 2|

| ¥

¥ Use Bank Switching

~Number of Code Banks: [2/3]

Intel HEX File Name for Bank 0: |..\Startup\Startup.hex i Browse...
Intel HEX File Name for Bank 1: ||..\CountUp\Countup.hex i Browse...

- izl Memory Device: || Flash Memory jﬂﬂ

~Program
@ Direct Program

@ Generate HEX File: [<Output HEX File Name> | EsjBrowse...

~Device Specification

@

Part Name: | AM29LV002BB-120 -] |

2 |—Ir'|put from data sheet |

—@@>@0500 Operation Mode 2|

@ NOT Secured
@ Disable CSoC JTAG access after download

(Diszble reset triggered reconrfiguration
@ Secured Disabie externafl access from MU pins

Disabie Trisvend FastChip deduag from the JTAG pins)

JTAG

CSoC

FLASH

/ CIKl XCancel‘ ? Help‘

Figure 12. Download Settings for Initial Image.

Trizcend FastChip: Download

=

—é@ﬂppli:lﬁnn Object Code 2}
¥ Use Bank Switching

Intel HEX File Name: [..\CountUpAgainiCountag.hex | ECrowse...

- Kizl Memory Device: || Parallel EPROM j =[2|

~Parallel EFROM =|

Device Specification

Generate HEX File: [countUpAgainimage.hex | Exjrowse...

Part Name: | AM27C020-200 -] |

Select part name
q ’7

9 |—Input from data sheet |

2z

!
-

MCSHEX
File

Device
Pragrammer

2/

CSoC

EPROM

_@@@CSGC Operation Mode 2|

@ NOT Secured
@ Disable CSoC JTAG access after download
(D¥sabie resot triggered reconrfiguration
@ Secured Disable axtornal access from WU pins
Disabie Triscond FastChip debuaqg from the JTAG pins)

/ DKl x Cancel‘ ? Help|

Figure 13. Download Settings for First Update Image.

14

WMuTriscend

Triscend FastChip: Download

—é@hpplication Object Code 2|

| »

|F Use Bank Switching

Intel HEX File Name: |..\CountUp\Countup.hex

| EoBrowse...

-l Memory Device: || Parallel EPROM j =|2|
~Parallel EPROM =|

Device

l FPragramrmer

Generate HEX File: [CountUpimage.hex

| EcBrowse..

= V74

Device Specification

MCSHEX

~ Select part name
5 {Part Name: |

¢

AM27C020-200 ~|

2, re

[|—Input from data sheet

' cSoC

EPROM

—@@>@CS¢:C Operation Mode 2|

@ NOT Secured
@ Disable CSoC JTAG access after download
{Disabie regot triggered reconrfiguration
@ Secured Disabie externafl 3ccess from VU pins
Disable Triscend Fasttiiip debug frow the JTAG pins)

v unl

¢ cancel ‘

? He|p|

Figure 14. Download Settings for Second Update Image.

Summar

This application note demonstrates a highly
secure remote update capability using a Tris-
cend E5 Configurable System-on-Chip (CSoC)
device. The supplied demonstration code can
be extended in many ways, but it provides the
basic components to develop a field-
upgradable product without sacrificing security.

Textbooks

1. Applied Cryptography, second edition,
Bruce Schneier. Wiley. ISBN 0-471-12845-
7.

2. TCP/IP lllustrated, Volume 1. The Proto-
cols, W. Richard Stevens. Addison Wes-
ley. ISBN 0-201-63346-9.

Datasheets

1. "Am29LV002B 2 Megabit (256Kx8-hit)
CMOS 3.0 Volt-only Boot Sector Flash
Memory", Publication 21520, Rev: C. Jan-
uary 1999. AMD Corporation
www.amd.com.

Triscend Literature

1. "Triscend E5 Configurable Processor Fami-
ly," product description
www.triscend.com/products/dse5csoc.pdf.

2. "Triscend E5 Development Board User's
Guide"
www.triscend.com/products/
Dev Board Guide.pdf.

Acknowledgements

Triscend thanks Algotronix, Ltd. for demon-
strating the feasibility of these concepts and for
creating the application code.

Algotronix, Ltd.
P.O. Box 23116
Edinburgh EH8 8JQ
Scotland

Tel: +44 131 556 9242
Fax: +44 131 556 9247
Web: www.algotronix.com

15

www.amd.com�
www.triscend.com/products/dse5csoc.pdf�
www.triscend.com/products/Dev_Board_Guide.pdf�
www.triscend.com/products/Dev_Board_Guide.pdf�
www.algotronix.com�

AN-02: Implementing Secure Remote Updates using Triscend E5 CSoC Devices

Revision History

Revision

Date

Comment

1.00

6-JAN-2000

Initial release.

Triscend, the Triscend logo, and FastChip ™ are trademarks of Triscend Corporation. Adobe Acrobat is a trade-

mark of Adobe Systems, Inc.

Microsoft, Windows, Microsoft Java Virtual Machine, and Internet Explorer are

trademarks of Microsoft Corporation. Netscape Communicator is a trademark of Netscape Communications Cor-
poration. Pentium is a Trademark of Intel Corporation. I°C™ or Inter-Integrated Circuit Bus is a trademark of Phi-
lips Semiconductors. All other trademarks are the property of their respective owners.

WaTriscend

Triscend Corporation
301 N. Whisman Rd.

Mountain View, CA 940403-3969

Tel: 1-650-968-8668 x166
Fax: 1-650-934-9393

E-mail: contact_us@triscend.com
Web: www.triscend.com

16

ANO2

Implementing Secure Remote
Updates using Triscend E5
Configurable System-on-Chip
Devices

— Table of Contents —

INTRODUGCTION ...tttttttttntnsssinsssssssses et n e e e e rnnn

SECURE DOWNLOAD ARCHITECTUREcettttttuuieteeeteettutiseeesesasstnnnasaesseestnsaaaeeeeeasttnnaaeseestnneererern
MANAGING THE FLASH IMEMORY ..citttiuiiieietiittiie s e e e e eeetttas s e e e e e eeaats s e e e e e e aat b e e e aeeeeetaaa s eaeeeeesnsa s eeeeeeenntnnnnes
ACTIVATING THE DOWNLOADED IMAGE .. .uiiietietiitie s e e e e eeetttee s e e e e ettt s e e e e e e e atae s s e e e eeeaassa e eeaeeeastannaeeeeeeessnes
INITIAL CONFIGURATION ...tttttttutieeeeetetttutseseaeseestasasseeeseessstaas s eeaaasessessssaaeeeessssan s aeeaaseassenaaseaesenssnssnnsaneseennnns
CRYPTOGRAPHIC SECURITY ..ittttttttuieeetetetttuusaeseaesasstasaseeaseessstansaaaessesssssan e aaaeeesstsnn e aereestnn e aaterern
KEEY IMANAGEMENT ...t ttttttie st e et et ettt s e e e e et ees e e s e e e e et e taa s e e e e et ee st e e e e e e e eebesa s e e e e e eetebateeaeeeeeebanaeneaesensennsennn
COMMUNICATIONS PROTOCOL ..eiiiiiiieieieieieiee et et et et et et et et et et et et et et et et etee et et et et et et e eeteeeseseesssessesssssesesnssnsnnnnnnnnnnnns
THE SOFTWARE ... 1ttttttesssesssnssssnsnsssssnnnsnnnsnsnnnnnsssssnnnns
THE DEMONSTRATION PROGRAMSiitiieiiiee e e s ittt e e e s s st tee e e e e e s e s st aae e e aeeeesannsettneeeaaeessnnnsntnnneaaeeesnnnnnes
RUNNING THE DEMONSTRATION ...ttttttteeesiaissuteeesesesssaassstesesesesssanssssssseeesssanssssnsseeesssamssssnseeeeeesmnsmsmmeeeeeennn
Y 1Y Y = ORI
I PSRN

ACKNOWLEDGEMENTS ...ttttttuteteeeteettttiaseeesesesstaasaaeeeeesestanaaaaastesstanaaaaeeeeesstsnnaaeeesesstsnnaseeesesssssnnnseeeeenennns

WaTriscend

AN-02: Implementing Secure Remote Updates using Triscend E5 CSoC Devices

18

	Introduction
	Secure Download Architecture
	Managing the Flash Memory
	Typical E5 Initialization Process
	Modifying the Initialization Process for Remote Updates

	Activating the Downloaded Image
	Initial Configuration
	Cryptographic Security
	Key Management
	Communications Protocol
	The Software
	Application Note Design Files and Software Source Code
	Limitations and Restrictions
	PC Software
	Bootstrap Loader (Startup)
	Download Code (Download)

	The Demonstration Programs
	Running the Demonstration
	The Demonstration
	Setting up the Development board
	Installing the Software
	Creating the Initial Image
	Downloading the First Update
	Downloading the Second Update
	Cryptographic Verification

	Summary
	Literature
	Textbooks
	Datasheets
	Triscend Literature

	Acknowledgements

