
 

© 1999-2000 by Triscend Corporation.  All rights reserved. www.triscend.com 

Using Keil Development 
Tools with Triscend FastChip 

and the E5 CSoC Family
 

January, 2000, v1.02 Application Note (AN-07)
Abstract: 

This application note describes how to configure and use Keil's µVision-51 and dScope-51 develop-
ment software with Triscend's FastChip CSoC Development System to create and debug Triscend E5 
applications. 

 

Introduction 
Keil's µVision-51 integrated development envi-
ronment for the 8051 and their dScope simula-
tor/debugger support the Triscend E5 Configura-
ble System-on-Chip (CSoC) device family. 

This application describes how to configure and 
use Keil's µVision-51 and dScope-51 develop-
ment software with Triscend's FastChip Devel-
opment System to create and debug Triscend E5 
applications.  Some of the topics include: 

 FastChip's automatic header file generation, 
including automatic address assignment for 
registers used in "soft" modules.  FastChip 
also generates initialization routines for the 
dedicated resources within an E5 CSoC de-
vice.  FastChip conveys this information to 
Keil via a header file. 

 How to configure Keil's compiler and linker 
settings for optimal results.  These settings 
are saved within a Keil project. 

 The differences between instruction-set simu-
lation (ISS) and in-system debugging. 

 How to use the Keil dScope instruction set 
simulator to verify logical operation. 

 How to use dScope as a source-level debug-
ger with the Triscend E5 CSoC. 

 What memory spaces and unique data types 
are available when using Keil C51.  Using on-
ly ANSI-C constructs limits the amount of op-
timization possible with the 8051 architecture. 

 How to use typed and generic pointers with 
C51. 

 How to declare interrupt service routines in 
both C51 and A51. 

 How to compile programs for the 8051 archi-
tecture of up to 2 Mbytes in size.  Keil's code-

banking compiler and unique features within 
the Triscend E5 CSoC make it possible. 

Communicating with Keil using 
Header Files 
The Triscend FastChip Development System 
communicates with the Keil tools via a header file.  
This header file is created while completing a 
CSoC hardware design, using FastChip's Gener-
ate program. 

The header file contains the following information. 

 Register names and address assignments for 
all 8032 and Triscend E5 control registers 
(CRU). 

 Register names and automatic assignments 
for all "soft" module functions that contain 
memory-mapped registers. 

 Initialization routines for all the Triscend E5 
dedicated resources such as the 8032 peri-
pherals, DMA channels, etc. 

CCrreeaattiinngg  tthhee  HHeeaaddeerr  FFiillee  uussiinngg  tthhee  
FFaassttCChhiipp  GGeenneerraattee  PPrrooggrraamm  
After completing the E5 hardware design in Fast-
Chip, create a header file to use with the Keil 
tools.  FastChip automatically assigns the ad-
dress values of all memory-mapped soft module 
registers during the Generate process. 

Generate uses the symbolic names defined in the 
design as the register variable names. Generate 
then allocates the variables—in SFR or XDATA 
space as specified in the design—at the Fast-
Chip-assigned address location. 

 

To create the header file, click the Generate but-
ton from the FastChip tool bar. 



AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family 

 2 

 
In the resulting dialog box, click the C option to 
create a 'C' header file or the Assembly option to 
create a header file for assembly-language pro-
grams.  Choose a location to store the resulting 
header file.  FastChip automatically assigns a '*.h' 
extension for the 'C' header file or '*.inc' for the 
assembly header file. 

 

IInncclluuddiinngg  tthhee  HHeeaaddeerr  FFiillee  
A 'C' or assembly language program written for 
the Triscend E5 must include the header file gen-
erated by FastChip before referring to any regis-
ters in the design.  The header file contains the 
register definitions and initialization routines re-
quired by the application. 

Including the 'C' Header 

To reference the 'C' header file created by Fast-
Chip, use the #include directive as shown be-
low.  

// Include the 'C' header file  
// created by FastChip 

#include "mydesign.h" 

Including the Assembly-Language Header 

The following options are not required for 'C' ap-
plications.  If the project is written in A51 assem-
bly language, use the $INCLUDE directive in-
stead. 

; Include the A51 header file  
; created by FastChip 

$INCLUDE (mydesign.inc) 

UUssiinngg  tthhee  IInniittiiaalliizzaattiioonn  RRoouuttiinneess  CCrreeaatteedd  
bbyy  FFaassttCChhiipp  
FastChip automatically generates initialization 
routines for the dedicated resources available on 
the Triscend E5 CSoC.  The top-level initialization 
routine is always named after the FastChip 

project name, not the name of the header file.  
For example, if the FastChip project were called 
"MyDesign", the top-level initialization routine 
would be called MyDesign_INIT( ). 

Calling the top-level function created by FastChip 
initializes all of the dedicated resources on the 
Triscend E5 CSoC, according to the settings spe-
cified by the designer during hardware design.  
The top-level function merely invokes the individ-
ual initialization routines, detailed in Table 1. 

Calling the 'C' Initialization Routines 

/*********************************** 
* MAIN FUNCTION 
***********************************/ 

void main () { 

    // Call the main initialization 
    // routine defined in the 
    // included header file. 

    MyDesign_INIT(); 

} 

Table 1.  Initialization routines for the 
E5 dedicated resources, generated 

automatically by FastChip. 
Function Description 

<design>_INIT() 

Executes the initializa-
tion routines for all 
dedicated resources, 
in the indicated order. 

Timer_0_INIT() Timer 0 initialization 
routine 

Timer_1_INIT() Timer 1 initialization 
routine 

Timer_2_INIT() Timer 2 initialization 
routine 

UART_INIT() UART initialization 
routine 

Interrupt_INIT() Interrupt controller 
initialization routine 

Watchdog_INIT() Watchdog Timer initia-
lization routine 

DMA_0_INIT() 
DMA controller, chan-
nel 0 initialization rou-
tine 

DMA_1_INIT() 
DMA controller, chan-
nel 1 initialization rou-
tine 

Power_INIT() Power management 
initialization routine 



  

 3 

Calling the A51 Initialization Routines 

The following options are not required for 'C' ap-
plications.  If using A51 assembly, call the Fast-
Chip-generated initialization routines as a subrou-
tine at the beginning of the application program. 

      cseg ; absolute segment at 0h 

      org 0000h 
      ljmp MAIN 

; Interrupt routines go here. 

; Call the main initialization 
; routine from the header file. 

MAIN: lcall MyDesign_INIT 

Other Header File Options 

A designer could choose to write his or her own 
initialization routines instead of using those auto-
matically generated by FastChip.  Likewise, the 
individual initialization routines for the dedicated 
resources can be invoked as stand-alone func-
tions.  For example, invoking UART initialization 
routine, UART_INIT( );, initializes just the 
UART and nothing else.  All of the individual in-
itialization routines are defined in the header file, 
including comments that document which regis-
ters are modified. 

Using the Header File in Other Modules 

Many software projects contain multiple modules.  
The FastChip header file defines the initialization 
routines for the E5’s dedicated resources.  The 
main module exclusively uses these functions 
and consequently the PROTOTYPE_ONLY com-
pile-time option is left undefined.  Other modules 
set PROTOTYPE_ONLY to avoid redeclaring these 
functions. 

For ‘C’ modules, the PROTOTYPE_ONLY option is 
defined as shown below. 

// ‘C’ modules, other than main,  
// should set the PROTOTYPE variable 

#define PROTOTYPE_ONLY 
#include "mydesign.h" 

For A51 modules, the PROTOTYPE_ONLY option 
is set as shown below. 

// A51 modules, other than main,  
// should set the PROTOTYPE variable 

$SET (PROTOTYPE_ONLY) 
$INCLUDE (mydesign.inc) 

Configuring the Keil Compiler/Linker 
After writing the application in Keil 'C', configure 
the Keil compiler and linker options to produce 
better code for the Triscend E5 family. 

CCrreeaattiinngg  aa  PPrroojjeecctt  
The compiler and linker options are saved as part 
of the Keil project.  Before setting the compiler 
options, create a new project and add the 'C' 
source files. 

From the Project menu, click New Project.  Se-
lect the location of your project registry and enter 
a name for your Keil project. 

 
Click OK when complete.  

To add 'C' source files to the project, select 
Project and then Edit Project from the menu.  

 
Once the dialog box appears, select the source 
files and click Add.  Click Save when finished. 

 



AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family 

 4 

SSeettttiinngg  tthhee  ''CC''  CCoommppiilleerr  OOppttiioonnss  
To set options for the 'C' compiler, click the Op-
tions menu item and select C51 Compiler....  

 
Object File Options 

Including debugging information in the object file 
simplifies debugging when using Keil's dScope 
instruction set simulator/debugger.  To set options 
for the object file, select the Object tab. 

  
For improved debugging visibility, choose the In-
clude debug information and the Include ex-
tended debug information options. Do not click 
the OK button just yet. 

Chip Options 

To set options for device-specific compiler optimi-
zation, choose the Chip tab from the dialog box. 
The 8032 "Turbo" microcontroller embedded with-
in each Triscend E5 CSoC device has two data 
pointers, similar to the Dallas 80C320 devices. 
Choose 2: Dallas (MODDP2) from the selection 
drop list.  

 
Click OK when finished.  

Linker Options 

The 8032 "Turbo" microcontroller has 256 bytes 
of RAM, just like other 8052/8032 derivatives.  By 
default, the Keil linker assumes only 128 bytes. 
To change these setting, select the Options 
menu item, then BL51 Code Banking Linker....  

 
In the resulting dialog box, click the 
Size/Location tab. Update the Ram Size (de-
cimal): setting from 128 to 256. Click OK when 
finished. 

 

AA5511  AAsssseemmbblleerr  OOppttiioonnss  
The following options are not required for 'C' ap-
plications.  Though this application note is written 
primarily for designers using Keil's 'C' compiler, 
there are a few Keil options when using assemb-
ler. 

From Options menu, select A51 Assembler….  
From the resulting dialog box, click the Object tab 
and clear the Define 8051 SFRs option. 

 



  

 5 

This prevents Keil from inserting SFR definitions 
that might conflict with the ones from the Fast-
Chip generated header file. 

Also, click Include debug information for im-
proved visibility during instruction-set simulation 
and debugging. 

Compiling the 'C' Program  
To compile the 'C' program, select Project then 
Make: Link Project.  This step compiles and 
links your 'C' program, and creates the .Hex file 
and associated object files.  

 
Alternatively, click the Build All button from the 
tool bar.  

 

PPootteennttiiaall  PPaatthhnnaammee  PPrroobblleemmss  
The currently available version of Keil, including 
the version on the Triscend FastChip CD-ROM, is 
a Windows 3.1 application.  Consequently, the 
Keil software has problems with long path names, 
specifically those containing space characters. 

Keil issues the following error during compilation 
if the project files are located in the FastChip 
project directory. 
FATAL ERROR 202: INVALID COMMAND 
LINE, TOKEN TOO LONG. 

The problem occurs because the full path name 
to a 'C' source file saved in the default FastChip 
project directory contains a space, which is an 
illegal character for Windows 3.1 programs. 

Fortunately, there is a work-around to this prob-
lem. 

1. Move the Keil source files (*.c, *.asm, *.h, 
*inc) to another directory, where the path 
name no longer contains a space. 

2. Modify the Keil project file to reflect the direc-
tory changes. 

Instruction-Set Simulation versus In-
System Debugging 
The Keil dScope interface provides two potential 
views for validating application code. 

 Instruction-set simulation (ISS) offers full 
logical debugging of an application, without 
requiring physical hardware.  The application 
code executes on a model of the 8032, simu-
lated on the PC. 

 In-system debugging provides true hard-
ware/software integration and testing.  The 
application code is integrated with real physi-
cal hardware and code executes in the actual 
target environment.  In-system debugging re-
quires the JTAG download cable, connected 
between the PC's parallel printer port and the 
dedicated JTAG pins on the Triscend E5 de-
vice. 

Table 2.  Comparing Instruction-Set 
Simulation and In-System Debugging. 

 Instruction-Set 
Simulation 

In-System 
Debugging

Best verification 
use 

During software 
development, 
verify logical 

operation 

During 
hardware/ 
software 

integration 
Observe program 
flow, set break-
points, set regis-
ter values 

  

Access all memo-
ry-mapped re-
sources 

  
Requires working 
hardware   
Easy access to 
8032's peripher-
als 

  

No extra hard-
ware required, 
PC only 

  

Soft modules 
function beyond 
any memory-
mapped control 
or status regis-
ters 

  

Provides true, 
accurate model 
of device 

  



AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family 

 6 

Table 2 outlines the major differences between 
instruction-set simulation and in-system debug-
ging.  Simulation is easier during code develop-
ment because no working hardware is required.  
Debugging is more useful, once hardware is 
available, to eliminate hardware/software integra-
tion problems. 

With older 8051 devices, in-system debugging 
was performed by attaching an in-circuit emulator 
(ICE) to the target board.  This often proved ex-
pensive and clumsy.  The E5 has built-in debug-
ging hardware that provides superior debugging 
capabilities via four dedicated JTAG pins on the 
device, connected to a PC operating as the de-
bugging host via the JTAG download cable. 

Simulating an Application using 
dScope 
The Keil 8051 development tools include an in-
struction-set simulator called dScope.  The 
dScope program does not simulate the functional-
ity of any "soft modules" implemented in the E5's 

CSL logic.  However, all memory-mapped regis-
ters are visible. 

SSttaarrttiinngg  tthhee  DDeebbuuggggiinngg  SSeessssiioonn  
To launch dScope from inside µVision, click Run 
and then dScope Debugger....  A separate win-
dow appears for dScope.  

 
Various windows, shown in Figure 1, display the 
status of the application and help during debug-
ging.  Occasionally, not all of dScope's windows 
appear on the screen.  To display all dScope win-
dows, right-click the mouse button on the dScope 
task in the Windows task bar.  Then, click Maxim-
ize. 

 
Figure 1.  Keil dScope instruction-set simulator and debugger interface. 

Code Viewing 
Window

Command 
Window 

Watch 
Window

Registers 
Window

Peripheral 
Model

Reset 
Button



  

 7 

CCoonnffiigguurriinngg  ddSSccooppee  
The dScope program requires two pieces of in-
formation to accurately simulate application code.  

1. A functional model of the specific 8051 va-
riant used in the design.  

2. The object file (OMF) containing the code, 
variable names, and other relevant informa-
tion from the application code. 

To load the functional model, click File and then 
Load CPU driver... from the topmost set of me-
nus.  A list of available CPU models appears. 

 
Currently, there is no exact model for the Tris-
cend E5 "Turbo" microcontroller.  However, the 
model for the Dallas 80C320 is sufficiently similar 
for most applications.  Scroll through the list and 
select the 80320.dll CPU driver.  The differences 
between a Dallas 80C320 and the E5's embed-
ded processor are few.  The Dallas device con-
tains a second dedicated UART.  Furthermore, 
some instructions on the Triscend E5 execute 
faster than the Dallas device.  However, for vali-
dating logical execution of code, the Dallas model 
is sufficient. 

 
After loading the processor model, load the object 
file created when the application program was 
compiled.  From the topmost set of menus, select 
File and then Load object file.... 

 

Select the object file corresponding to the applica-
tion program from the dialog box. 

 
Click OK when finished. 

OObbsseerrvviinngg  RReeggiisstteerr  VVaalluueess  
With the object file loaded, you can specify va-
riables that dScope should watch.  Any register 
declared in the header file can be watched, either 
as a byte-wide or bit-wide entity.  Likewise, any 
variable declared with global scope is visible. 

To watch a variable, use the "Command" window 
to type in a "watch set" command. 

ws <variable name>  

 
The "watched" values appear in the Watch win-
dow, shown below. 

 



AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family 

 8 

Many of the 8032's internal registers are visible in 
the "Regs" window, including the Data Pointer 
(DPTR), Accumulator (A), and the current register 
bank (R0-R7).  Register values that changed are 
highlighted in blue.  The "Regs" window typically 
only updates after the processor halts execution, 
reaches a breakpoint, or is single-stepped. 

 

OObbsseerrvviinngg  PPeerriipphheerraallss  
Keil's dScope instruction-set simulator provides 
views into the internal operation of the microcon-
troller's peripherals.  The correct peripheral simu-
lation models only appear if the 80320.dll driver is 
loaded.  The 80320.dll model is designed for the 
Dallas 80C320.  The Triscend E5 is sufficiently 
similar, though the E5 does not have a second, 
dedicated UART.  These peripheral models are 
not available in the debugger interface driver, te5-
8032.dll, used during in-system debugging. 

The following example demonstrates how to ob-
serve the operation of the Watchdog Timer.  From 
the topmost menus, select Peripherals, then Ti-
mer, then Watchdog. 

 
The resulting window shows the current register 
settings, flag values, and overall state of the 
Watchdog Timer.  These values can also be mod-
ified during simulation. 

 

OObbsseerrvviinngg  CCooddee  FFllooww  
The code window displays the application code 
and indicates the current program state. There 
are three possible code views to display. 

1. HLL or High-Level Language, which usually 
is the 'C' source file, or the original assembly 
language listing if using assembly. 

2. ASM or Assembly language, which shows the 
resulting compiled or assembled application 
code. 

3. MIXED, indicating a mix of high-level lan-
guage intermixed with the corresponding 
compiled or assembled assembly-level code  

Choose the desired view using the drop list in the 
upper left-hand corner.  

 
Examples of each view are shown in Figure 2, 
Figure 3, and Figure 4. 

Simulating Your Code 

RReesseettttiinngg  tthhee  SSyysstteemm  
Press the large Reset button in the "Toolbox" 
window to restart the code.  The reset button si-
mulates the conditions after the 8032 microcon-
troller is reset.  In a Triscend E5, the 8032 is ac-
tively involved in device initialization and is not 
reset at the end of initialization.  Consequently, 
some of the register contents may vary from the 
simulation model. 

 



  

 9 

 
Figure 2.  High-level language (HLL) view. 

 
Figure 3.  Compiled or assembled assembly language (ASM) view. 

 
Figure 4. Intermixed (MIXED) high-level language and compiled or assembled assembly lan-

guage view. 



AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family 

 10 

SSttaarrttiinngg  EExxeeccuuttiioonn  
To start program execution, click the Go! menu 
item or its corresponding menu bar icon.  

 
Once the program starts running, the values 
change in any open peripheral window and in the 
Watch window.  The register window, "Regs", 
may not update until the processor is halted. 

SSttooppppiinngg  EExxeeccuuttiioonn  
To stop the program, click the Stop! menu item or 
its corresponding menu bar icon.  The code view-
ing window displays the next instruction to be ex-
ecuted once code execution resumes. 

 
After clicking the Stop! button, all windows should 
stop updating.  Any changed registers are hig-
hlighted in the "Regs" window. 

SSiinnggllee  SStteeppppiinngg  
To single step through the program, click the 
StepInto! menu item or its corresponding icon on 
the tool bar.  Again, the code viewing window dis-
plays the next instruction to be executed once 
code execution resumes.  Likewise, any changed 
registers are highlighted in the "Regs" window. 

 

SSeettttiinngg  aa  BBrreeaakkppooiinntt  
A program can execute until it reaches a desired 
line of code by setting a breakpoint.  To set a 
breakpoint, double-click the mouse while the cur-
sor is pointing to the desired statement.  A 
"[BR 0]" indicator appears to the right of the 
statement indicating that Breakpoint 0 is set.  

 
Click the Go! button. The program should ex-
ecute until it reaches the breakpoint.  Single-step 
the program and observe any watched variables 
in the Watch window.  Click Go! to resume ex-
ecuting code.  Again, the program executes until 
it reaches the breakpoint. 

EExxeeccuuttee  UUnnttiill  RReeaacchhiinngg  aa  SSppeecciiffiicc  
SSttaatteemmeenntt  
A program can execute until it reaches a particu-
lar line, without setting a breakpoint.  Use the Up 
and Down keys or the mouse to point to the de-
sired statement.  Don't double-click on this line, 
otherwise a breakpoint will be set. 

Click on the GoTilCursor! menu item or the cor-
responding icon from the menu bar.  

 
The program executes until it reaches the speci-
fied line.  

 



  

 11 

SStteeppppiinngg  OOvveerr  aa  SSuubbrroouuttiinnee  
One additional function is a bit more difficult to 
demonstrate. The StepOver! function steps over a 
subroutine or function, without actually stepping 
through all the statements in the underlying rou-
tine.  To see how this function operates, press the 
big Reset button in the "Toolbox" menu. 

 
Single-step until you reach a statement that calls 
a subroutine. 

 
Skip the dreary details of the subroutine by step-
ping over it.  Click the StepOver! menu item or its 
corresponding icon from the menu bar.  

 
Clicking the button executes the subroutine and 
then advances the program flow to the next in-
struction to be executed, skipping the instructions 
within the subroutine. 

SStteeppppiinngg  OOuutt  ooff  aa  SSuubbrroouuttiinnee  
A similarly useful function is StepOut!, which es-
capes out of subroutine.  To see how this function 
operates, again click the big Reset button and 
single-step until you reach a statement that calls 
a subroutine.  Single-step to enter the subroutine.  
To execute the remainder of the subroutine and 
effectively escape from it, click the StepOut! 
menu item or its corresponding icon in the menu 
bar. 

 
As before, the program proceeds to the next in-
struction to be executed. 

SSeettttiinngg  aa  RReeggiisstteerr  VVaalluuee  
To set a register's value, type in a valid 'C'-style 
statement in the Command Window.  For exam-
ple, to set a register called Result to all one's, 
type the following statement in the Command 
Window.  The trailing semi-colon is optional in 
Keil. 

Result = 0xff 

You should see the corresponding value change 
in the Watch window.  

 

FFoorrcciinngg  IInntteerrrruuppttss  
Setting an interrupt flag is helpful when debug-
ging an interrupt service routine (ISR).  For ex-
ample, to invoke an interrupt service routine 
created for the Watchdog Timer, the Watchdog 
Interrupt Flag (WDIF) could be set using the 
Watchdog Timer peripheral window, as shown 
below. 

 

In-System Debugging 
After creating the hardware and writing the appli-
cation software, it would usually be time to lug out 
the in-circuit emulator (ICE) or logic analyzer.  
Fortunately, the FastChip Development System 
provides a much more modern and self-
contained, in-system debugging environment. 
Using Keil and FastChip, a Triscend E5 design 
can be debugged 

 In system,  

 Operating at full speed,  

 With all of the other system hardware and 
software! 



AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family 

 12 

Keil's dScope, in conjunction with FastChip and 
the JTAG download cable, provides source-level 
debugging.  The same dScope package used 
earlier to simulate an application program can 
also be used to talk directly with working silicon, 
using a different CPU driver.  The debugger mode 
behaves slightly differently than the instruction-set 
simulator mode.  Some of the menu items availa-
ble during simulation are not available during in-
system debugging, specifically the Peripheral op-
tions. 

IInnssttaalllliinngg  KKeeiill  DDeebbuuggggeerr  SSuuppppoorrtt  
If you install FastChip, then later install Keil from 
another source, you need to copy the appropriate 
DLL to run the Keil debugger. First, follow these 
steps to copy the DLL: 

1. Locate the 8032-te5.dll file in the \apps direc-
tory on the FastChip CD-ROM. 

2. Copy this file to the Keil \Bin directory. 

The TCP/IP protocol must be installed on the host 
PC in order to use the Keil dScope debugger or to 
download a design from FastChip. 

CCoonnnneeccttiinngg  KKeeiill  ddSSccooppee  wwiitthh  tthhee  TTrriisscceenndd  
CCSSooCC  DDeevviiccee  
Before using the Keil debugger, recompile the 
source code and create a .Hex file. 

Then download the full design to the Triscend E5 
device by clicking the Download button in Fast-
Chip. 

 
If you don't perform these steps, the Keil object 
file used by the debugger may not match the de-
sign actually downloaded into the Triscend E5 
device.  This will cause strange behavior. 

After successfully downloading the design, leave 
FastChip running. 

Invoke the Keil dScope debugger. 

To interface Keil's dScope program directly to the 
E5 CSoC device, load the special Triscend CPU 
driver included on the FastChip CD-ROM. This 
CPU driver turns the Triscend JTAG download 
cable into a real-time source-level interface con-
nected to the operating application.  From the 
dScope menu, click File followed by Load CPU 
driver....  

 
Instead of the driver used to simulate the 80C320 
microcontroller select the Triscend E5 driver 
called 8032-te5.dll.  If this driver does not appear, 
see "Installing Keil Debugger Support". 

 
The Triscend driver connects to the JTAG Down-
load Cable, and ultimately your hardware, via a 
TCP/IP connection.  Because the JTAG download 
cable uses TCP/IP, an application can be devel-
oped on computer and then downloaded via a 
local network or the Internet to another PC in your 
lab or at a remote location. 

If dScope is running on the computer connected 
directly to the target hardware, keep the default 
values for the host name and port settings.  Oth-
erwise, change the host name to the name of the 
computer running FastChip. 

To connect, click the Connect button. 

 



  

 13 

Load the object file for the application.  Click File 
followed by Load object file.... 

 
Select the object file from the resulting dialog box. 
Once the object file is loaded, the target applica-
tion may halt operation.  

 
After following these steps, the Keil dScope pro-
gram is intimately connected to the Triscend E5 
CSoC device.  The dScope functions used during 
instruction-set simulation also operate while per-
forming in-system debugging.  The only exception 
is that the peripheral models available in the 
80320.dll CPU driver are not available in the 
8032-te5.dll driver. 

Problems? 

If you have problems connecting the Keil source-
level debugger to the Triscend E5 development 
board, possible causes range from the Windows 
NT service pack version to whether the TCP/IP 
protocol driver is installed on your computer.  

Investigate possible solutions by visiting the on-
line Triscend SupportCenter web site. 

Automating dScope  
Typing commands and selecting menu items dur-
ing debugging can be tedious, especially during a 
repetitive debug cycle.  Fortunately, dScope can 
execute an initialization file when invoked. 

The dScope initialization file below is saved as 
mydesign.ini and performs the following func-
tions … 

 Loads the 80C320 driver, which is similar to 
the 8032 "Turbo" microcontroller 

 Loads the object file for ‘MyDesign’ 

 Defines two buttons.  When pressed, one 
button executes code until reaching main(), 
the other executes code until reaching the 
Watchdog Timer interrupt service routine 

 Displays two variables, Result and WDCON, 
in the Watch window 

 Initializes the Result register with 0x4a 

/* Load 80C320 driver, similar to E5 */ 
load 80320.dll 
 

/* Load the object file */ 
load mydesign 
 

/* Define buttons */ 
/* Go until reaching main() */ 
define button "Go til main()", "g,main" 
/* Go until reaching the Watchdog ISR */ 
define button "Go til wdt_isr()", 
      "g,watchdogISR" 
 

/* Setup Watch window */ 
ws Result 
ws WDCON 
 

/* Define contents of Result register */ 
Result=0x4a 

 
An option available within µVision automatically 
executes the initialization file whenever dScope is 
invoked.  To set the option, select the Options, 
then the dScope Debugger menu items. 

 
Type in the name of the initialization file and click 
OK when finished. 

Memory Spaces and Memory Models 
The Keil compiler provides access to all memory 
areas associated with the E5's embedded 8032 
microcontroller.  The various memory areas and 
data types are shown in Table 3.  Each variable 
can be explicitly assigned to one of these specific 
memory spaces or data types. 

The sbit, sfr, and sfr16 data types provide 
access to the Special Function Registers (SFRs) 
available on the 8051.  These entities are specific 
to the 8051 architecture and the Keil C51 compi-
ler.  They are not a part of ANSI C and cannot be 
accessed through pointers. 

http://www.triscend.com/supportcenter.com�


AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family 

 14 

An sbit variable can be declared either using its 
absolute address, or using the bit’s position within 
another declared sfr location.  For example, if a 
“soft” module for 8032 port P0 is added to the 
design, bit 3 of the byte-wide port P0 can be de-
clared using the following statement.  The P0 
SFR is already declared in the header file. 

; Declared in FastChip header file 
    ; sfr P0 = 0x80; 

    sbit mybit = P0 ^ 3; 

Registers located within most "soft" modules can 
either be located in the microcontroller's SFR 
space (sfr) or XDATA space (xdata), which is the 
default.   FastChip's Generate utility uses the 
symbolic names defined in the design as the reg-
ister variable names.  Generate then allocates the 
variables in SFR or XDATA space as specified in 
the design, at the FastChip-assigned address 
location. 

In the resulting 'C' header file, the symbolic ad-
dress of a single-byte soft-module register is de-
clared as a variable of type of sfr or unsigned 
char, as shown in Table 4.  Similarly, the sym-
bolic address of a multiple-byte soft-module regis-
ter is declared as an unsigned char array. 

In the assembly header, each symbolic address is 
declared as a label to the starting address.  Mul-
tiple-byte registers must be accessed by incre-
menting the data pointer from the label, byte by 
byte. 

Other variables used in the 8032 application pro-
gram can be similarly located within specific 
memory spaces by including a memory type spe-
cifier in the variable declaration. 

Accessing internal data memory and SFRs is 
considerably faster than accessing external data 
memory.  Consequently, place frequently used 
variables in internal data memory and less fre-
quently used variables in external data memory. 

As with the signed and unsigned attributes, you 
may include memory type specifiers in the varia-
ble declaration. 

Table 3.  Memory and Data Types for the 
8032 "Turbo" Microcontroller. 

Memory 
Type 

Size 
(bytes) Description 

sbit 16 
The bit-addressable re-
gion of the 8032's Special 
Function Registers 

sfr 128 The 8032's Special Func-
tion Registers 

sfr16 64 
Two Special Function 
Registers treated as a 16-
bit integer 

code 
64K 
(per 

bank) 

Program memory; ac-
cessed by opcode MOVC 
@A+DPTR.  Effective 
code space can be in-
creased using code bank-
ing. 

data 128 
Directly addressable in-
ternal data memory; fast-
est access to variables. 

idata 256 

Indirectly addressable 
internal data memory; 
accessed across the full 
internal address space. 

bdata 16 

Bit-addressable internal 
data memory; allows 
mixed bit and byte ac-
cesses. 

xdata 64K 

External data memory (64 
Kbytes); accessed by 
opcode MOVX @DPTR.  
Used to access the E5's 
Configuration Register 
Unit (CRU), on-chip 
SRAM, and "soft" module 
registers defined in xda-
ta space. 

pdata 256 

Paged (256 bytes) exter-
nal data memory; ac-
cessed by opcode MOVX 
@Rn.  This memory type 
is not recommended on 
the Triscend E5. 

Table 4.  Declarations for "Soft" Module Registers from FastChip. 
FastChip 

Address Space Resulting Declaration in Header File 
SFR sfr <symbolic name> = <location>;

XDATA unsigned char xdata <symbolic name> _at_ <location>;
<symbolic name> = The symbolic name specified by the user in FastChip. 
<location> = The address location allocated by FastChip's Generate utility. 



  

 15 

If the memory type specifier is omitted in a varia-
ble declaration, the default or implicit memory 
type is automatically selected.  Function argu-
ments and automatic variables that cannot be 
located within the processor's registers are also 
stored in the default memory area. 

As shown in Table 5, the default memory type is 
determined by the memory model specified in the 
compiler options. 

Table 5.  Memory Models and 
Default Memory Types. 

Memory Model Default Memory Type
Small, default data
Large xdata

Compact pdata
(not recommended) 

MMeemmoorryy  MMooddeellss  
The memory model determines the default mem-
ory type used for function arguments, automatic 
variables, and variables declared with no explicit 
memory type.  By default, Keil assumes the Small 
memory model, which is recommended for most 
applications.   The default memory type can be 
overridden by explicitly declaring a variable using 
a memory type specifier. 

The memory model option is located in the C51 
Compiler Options dialog box.  Click the Memory 
Model tab and select the desired model from the 
drop list. 

 
Always use the small memory model, unless the 
application will not fit or operate using the small 
model.  The small model generates the fastest, 
tightest, and most efficient code. Variables within 
the application can always be explicitly specified 
to reside in other memory spaces. 

In the Small model, all variables default to the 
128 bytes internal data memory within the 8032.  
This is equivalent to explicitly declaring all va-
riables with the data memory-type specifier. Va-
riable access is fast and very efficient, though all 
data objects, including the stack, must fit within 

the microcontroller's 128 bytes of RAM.  Stack 
size is critical because the stack space used de-
pends upon the nesting depth of the various func-
tions. Typically, if the BL51 code banking link-
er/locator is configured to overlay variables in the 
internal data memory, which is the default, the 
Small model is the best model to use. 

With the Compact model, all variables default to 
one page of external data memory, equivalent to 
explicitly declaring all variables with the pdata 
memory type specifier.  This model is not recom-
mend for E5 CSoC applications.  Use the large 
memory model instead.  This memory model ac-
commodates a maximum of 256 bytes of va-
riables.  The limitation is due to the indirect ad-
dressing scheme used via registers R0 and R1. 
Though the compact model is faster than the 
large model, the compact model is awkward on 
the E5 CSoC. 

In the Large model, all variables default to exter-
nal data memory, equivalent to explicitly declaring 
all variables using the xdata memory type spe-
cifier.  The data pointer (DPTR) is used for ad-
dressing, though memory accesses are ineffi-
cient, especially for variables with a length of two 
or more bytes.  The large memory model gene-
rates more code than the small or compact mod-
els. 

Pointers 
The C51 compiler supports pointer declarations 
using the asterisk character (‘*’), similar to ANSI-
C.  However, due to the 8051's unique architec-
ture, the C51 compiler supports two different 
types of pointers: 

 Generic pointers 

 Memory specific pointers 

GGeenneerriicc  PPooiinntteerrss  
Generic pointers are declared similar to standard 
ANSI-C pointers. 

 char *s; /* string pointer */ 

 int *numptr; /* int pointer */ 

 long *state; /* long pointer */ 

Generic pointers are always stored as three-byte 
values.  The first byte indicates the memory type, 
while the second and third bytes store the high-
order byte and the low-order address byte re-
spectively. 



AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family 

 16 

Generic pointers can access any variable, regard-
less of its location in 8051 memory space.  Con-
sequently, many library routines use generic poin-
ters because a function has access to data re-
gardless of the memory type where it is stored. 

Declare the memory area in which the generic 
pointer is stored by using a memory type specifi-
er.  The variables referenced by these pointers 
may reside in any memory area.  However, the 
pointers themselves reside in the specified mem-
ory area. 

 /* string pointer in xdata*/ 
 char * xdata s;  

 /* int pointer in data*/ 
 int * data numptr; 

 /* int pointer in idata*/ 
 long * idata state; 

MMeemmoorryy  SSppeecciiffiicc  PPooiinntteerrss  
Memory specific pointers are more memory effi-
cient than generic pointers.  Typed pointers are 
stored using only one byte (idata, data, bdata, 
and pdata pointers) or two bytes (code and 
xdata pointers) because the memory type is 
specified at compile-time.  The memory type byte 
required by generic pointers is not necessary for 
typed pointers. 

Memory specific pointers always define a memory 
type in the pointer declaration and always refer to 
a specific memory area. 

 /* pointer to string in data */ 
 char data *str; 

 /* pointer to int(s) in xdata */ 
 int xdata *numtab; 

 /* pointer to long(s) in code */ 
 long code *longtab; 

By default, pointers are stored in the default 
memory type, which depends on the memory 
model used during compilation.  However, typed 
pointers themselves can have a memory type 
specification, as shown in Figure 5. 

 item_type is the type of item pointed to, 
one of the usual 'C' data types such as 
signed or unsigned char, int, long, 
float, etc. 

 mem_type_item is the memory type specifi-
er defining where the referenced item resides 
in memory, of type code, data, idata, or 
xdata. 

 mem_type_ptr is the memory type specifier 
defining where the pointer to the item resides 
in memory, of type code, data, idata, or 
xdata. 

unsigned char data * xdata my_ptr=0x5b;

*my_ptr=0x5b

xdatadata

A
dd

re
ss

usigned char0x5b
0x5c
0x5d

0x5a
0x59
0x58
0x57
0x56

 
 

item_type mem_type_item * mem_type_ptr ptr_name [= address]; 

Figure 5. A typed pointer, located in xdata memory, pointing to an unsigned character in data 
memory. 



  

 17 

 ptr_name is the variable name for the poin-
ter. 

 address is an optional initialization value for 
the pointer, which must be a legal value for 
the memory space defined by 
mem_type_item.  For example, data 
space is 128 bytes and a pointer to data 
space must be between 0x00 to 0x7F. 

CCoommppaarriinngg  MMeemmoorryy  SSppeecciiffiicc  aanndd  GGeenneerriicc  
PPooiinntteerrss  
Using memory specific pointers can significantly 
accelerate a 'C' program targeted to the 8051 ar-
chitecture.  Table 7 shows the differences in code 
and data size and execution time for pointer de-
clared in idata space (fastest, smallest), xdata 
space, and generic pointers (slowest, largest). 

Interrupt Sevice Routines 
The Triscend E5 has 12 interrupt sources.  Writ-
ing the corresponding interrupt service routines 
(ISR) in Keil 'C' requires some special syntax, 
including the Keil interrupt number. 

TTrriisscceenndd  EE55  IInntteerrrruuppttss    
Table 6 shows the interrupts available on the E5's 
embedded 8032 "Turbo" microcontroller.  The 
table also indicates the Keil interrupt number and 
the corresponding interrupt vector address.  The 
interrupts always appear in the 8032's 16-bit logi-
cal code space.  The interrupts are listed from 
highest to lowest priority.  The shaded interrupts 
are those associated with hardware debugging 
and not normally applied in end-user applications. 

DDeeccllaarriinngg  IInntteerrrruupptt  SSeerrvviiccee  RRoouuttiinneess  
C51 Declarations 

To create an interrupt service routine (ISR) in Keil 
'C', declare a static void function using the in-
terrupt keyword and correct interrupt number.   

The Keil 'C' compiler automatically generates the 
interrupt vector plus the entry and exit code for 
the interrupt routine. The interrupt function 
attribute tags the function as an ISR.  Optionally, 
specify which register bank the ISR utilizes with 
the using attribute.  Valid register banks range 
from 0 to 3. 

Table 6.  Vector locations for 
interrupt sources. 

Source 
Keil 

Intr. # 
Vector 

Address 
High-Priority  
Interrupt 6 0x0033 

External Interrupt 0 0 0x0003 
Timer 0 Overflow 1 0x000B 
External Interrupt 1 2 0x0013 
Timer 1 Overflow 3 0x001B 
Serial Port 4 0x0023 
Timer 2 Interrupt 5 0x002B 
DMA 7 0x003B 
Hardware 
Breakpoint 8 0x0043 

JTAG 9 0x004B 
Software Breakpoint 10 0x0053 
Watchdog Timer 12 0x0063 

Table 7.  Comparing Typed and Generic Pointers. 
 idata Pointer xdata pointer Generic Pointer 

Sample 'C' Program 
char idata *ip;
char val; 
val = *ip; 

char xdata *xp;
char val; 
val = *xp; 

char *p; 
char val; 
val = *p; 

Generated 8051 Assem-
bly Code 

MOV R0,ip 
MOV val,@R0 

MOV DPL,xp +1
MOV DPH,xp 
MOV A,@DPTR 
MOV val,A 

MOV R1,p + 2
MOV R2,p + 1 
MOV R3,p 
CALL CLDPTR 

Pointer Size, Space 1 byte, data 2 bytes, data 3 bytes, data 
Generated Code Size, 
Space 4 bytes, code 9 bytes, code 11 bytes, code 

(plus library function) 

Execution Time 4 instruction cycles 
16 bus clock cycles 

7 instruction cycles 
28 bus clock cycles 

13 instruction cycles 
52 bus clock cycles 



AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family 

 18 

The example below declares the interrupt service 
routine for the Timer 0—Keil interrupt number 1—
and uses register bank 2. 

static void T0_ISR(void) interrupt 1 
using 2 { 
 ... 
} 

A51 Assembly Language Declarations 

In assembly, interrupts are declared by their ab-
solute address.  For example, the Timer 0 inter-
rupt service routine starts at 0x000B, the interrupt 
vector shown in Table 6.  An interrupt service rou-
tine always returns using the "return from inter-
rupt" instruction, RETI, and not the instruction 
normally used to return from a called subroutine. 

; TIMER 0 INTERRUPT SERVICE ROUTINE 
; Timer 0 appears at 0x000B. 

      org 000Bh 

      ljmp T0_ISR 

; Call the main initialization 
; routine defined in the 
; included header file. 

T0_ISR: 

    ; interrupt service routine 
    ; goes here 

      reti 

Code Banking 
Most 8051 application programs are limited to 
64K bytes, the maximum address range sup-
ported by the 8051's 16-bit code space.  Howev-
er, Keil's BL51 code banking linker/locator sup-
ports building application programs larger than 
64K bytes.  Special hardware within a Triscend 
E5 CSoC device allows the embedded 8032 mi-
crocontroller to access up to 16M bytes of code 
space, though the Keil linker supports only 2 
Mbytes.  The special hardware, called code map-
pers, allows the 8032 to swap between multiple 
banks of code, each bank 64K bytes in size.  The 
code mappers must be controlled by application 
software in a process called bank switching. 

The Keil BL51 code banking linker/locator man-
ages one common area and up to 32 separate 
banks of up to 64K bytes, totaling 2M bytes of 
bank-switched program space.  Software support 
for bank switching hardware includes a short as-
sembly file targeted for the Triscend E5. 

To create very large and efficient applications, 
carefully group functions in the different banks.  
Locate particular program modules to specific 
banks in order to minimize bank switching. 

CCoommmmoonn  AArreeaa  
In a bank-switching program, the common area is 
a region of memory accessible at all times from 
all banks.  The common area must always be 
available and cannot be physically swapped out 
or moved around.  The code in the common area 
is duplicated in each bank. 

The common area contains program sections and 
constants that must be available at all times.  It 
may also contain frequently used code, to minim-
ize bank switching.  By default, the following code 
sections are automatically located in the common 
area: 

 Reset and interrupt vectors 

 Code constants 

 C51 interrupt functions 

 Bank switch jump table 

 Some C51 run-time library functions 

EExxeeccuuttiinngg  FFuunnccttiioonnss  iinn  OOtthheerr  BBaannkkss  
The Keil code-banking linker—in conjunction with 
the Triscend-supplied l51_bank routine—selects 
a particular code bank by programming the E5's 
CMAP1 code mapper with the base address of 
the target code bank.  The Keil code-banking 
linker automatically generates a jump table for 
functions located in other code banks. 

When the application code calls a function in a 
different bank, the program switches to the other 
bank and jumps to the desired function.  When 
the function completes, the program restores the 
previous bank and returns execution to the calling 
routine. 

The bank switching process requires approx-
imately 50 instruction cycles and consumes two 
additional bytes of stack space.  To improve sys-
tem performance, group interdependent functions 
in the same code bank.  Functions frequently in-
voked from multiple banks should be relocated to 
the common area. 

CCooddee  BBaannkkiinngg  oonn  tthhee  TTrriisscceenndd  EE55  
FastChip includes a modified version of the Keil 
code-banking library that takes advantage of the 
E5's code mappers.  The Keil code-banking 



  

 19 

scheme supports up to 32 code banks, each 64 
Kbytes in size. The common code area is re-
peated in each bank.  Please refer to the Keil do-
cumentation for more information about the Keil 
code banking support.  Additional information is 
available from the comments in the Triscend 
code-banking library source-code. 

Configuring the code banking library 

The code-banking library has two constants that 
might require modification, depending on the 
project. 

 ?B_NBANKS — the number of banks sup-
ported (default is 16, maximum of 32). 

 ?B_RTX — set to 1 when using Keil's RTX-51 
FULL operating system; otherwise set to 0 
(default is 0). 

?B_NBANKS must be set equal to or greater than 
the number of code banks, otherwise link errors 
will occur.  Setting ?B_NBANKS to a value larger 
than the number of banks required results in 
some wasted code because the library generates 
code to switch to the unused banks.  If the appli-
cation is highly sensitive to code size, then set 
?B_NBANKS to exactly match the number of 
banks required. 

Using the code banking library 

Follow these steps to use the code-banking li-
brary: 

1. Archive the existing l51_bank.a51 file 
found in the C51/LIB directory to a different 
file name or another directory. 

2. Copy the Triscend l51_bank.a51 and 
l51_bank.obj files from the Fast-
Chip1999/Keil/Codebank directory to the 
C51/LIB directory. 

3. If necessary, edit the l51_bank.a51 file to 
change the configuration settings.  Then, as-
semble the changes using the following 
command to create a new 151_bank.obj file: 
a51 l51_bank.a51 

The library is now ready to use when linking the 
application with the BL51 Code Banking Linker. 
Set the following options in Keil's µVision devel-
opment environment.  Select Options, then BL51 
Code Banking Linker... from the menu. 

From the resulting dialog box, select the Linking 
tab.  Choose the option Code Banking under 
Target Options. 

 
Click OK when finished. 

Now select Options, then Make… from the 
menu.  Click the After Compile tab from the re-
sulting dialog box.  Select the Run BL51 Banked 
Linker option, and enable the Run OC51 Object 
Converter and Run OH51 Object Hex Conver-
ter options. 

 
Click OK when finished. 

DDoowwnnllooaaddiinngg  BBaannkkss  uussiinngg  FFaassttCChhiipp  
After compiling and linking a code-banked appli-
cation, Keil creates multiple .Hex files, one for 
each 64K-byte bank. 

To download multiple code banks to the Triscend 
E5, invoke FastChip and click on the Download 
button. 

 



AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family 

 20 

Once the download dialog box appears, perform 
the following steps. 

 
1. Enable the Use Bank Switching option. 

2. Specify the Number of Code Banks to be 
downloaded. 

3. Select the .Hex files for each bank.  Bank 0 is 
always the bank executed at start-up.  Each 
bank is loaded at a successive 64K boundary 
in memory. 

4. Choose the appropriate Memory Device for 
download.  Only external byte-wide memories 
are applicable for code banked applications. 

5. Choose the Program download method.  Ei-
ther program the E5 CSoC device directly, or 
save the image as a new, combined .Hex file 
to be programmed into an external memory 
device using an external programmer. 

6. Click OK when finished to start the download-
ing process. 

Summary 
Triscend's FastChip development system inti-
mately supports features available in Keil's 8051 
development software. 

Using the full capabilities of the Keil compiler, 
code-banking linker, and dScope debugger, a 
designer can create fast and efficient application 
programs for the Triscend E5 CSoC devices. 

 

 

Revision History 
Revision Date Comment 

1.00 22-DEC-1999 First release. 
1.01 6-JAN-2000 Minor formatting and wording changes. 
1.02 11-JAN-2000 Corrected various spelling errors. 

 

Triscend, the Triscend logo, and FastChip ™ are trademarks of Triscend Corporation.  Adobe Acrobat is a trade-
mark of Adobe Systems, Inc.  Microsoft, Windows, Microsoft Java Virtual Machine, and Internet Explorer are 
trademarks of Microsoft Corporation.  Netscape Communicator is a trademark of Netscape Communications Cor-
poration.  Pentium is a Trademark of Intel Corporation.  I2C™ or Inter-Integrated Circuit Bus is a trademark of Phi-
lips Semiconductors.  All other trademarks are the property of their respective owners. 

 Triscend Corporation 
301 N. Whisman Rd. 
Mountain View, CA  940403-3969 

Tel:  1-650-968-8668 x166 
Fax:  1-650-934-9393 

E-mail:  contact_us@triscend.com 
  Web:  www.triscend.com 

 
 



 

 

  

 

 

 

 

AN07 
Using Keil Development Tools with 

Triscend FastChip and 
the E5 CSoC Family 

 

 

 

 

— Table of Contents — 
 
INTRODUCTION ............................................................................................................................................ 1 
COMMUNICATING WITH KEIL USING HEADER FILES ........................................................................................ 1 
CONFIGURING THE KEIL COMPILER/LINKER ................................................................................................... 3 
COMPILING THE 'C' PROGRAM ...................................................................................................................... 5 
INSTRUCTION-SET SIMULATION VERSUS IN-SYSTEM DEBUGGING ................................................................... 5 
SIMULATING AN APPLICATION USING DSCOPE................................................................................................ 6 
SIMULATING YOUR CODE ............................................................................................................................. 8 
IN-SYSTEM DEBUGGING ............................................................................................................................. 11 
AUTOMATING DSCOPE ............................................................................................................................... 13 
MEMORY SPACES AND MEMORY MODELS ................................................................................................... 13 
POINTERS ................................................................................................................................................. 15 
INTERRUPT SEVICE ROUTINES.................................................................................................................... 17 
CODE BANKING ......................................................................................................................................... 18 
SUMMARY ................................................................................................................................................. 20 
 

 

 


	Introduction
	Communicating with Keil using Header Files
	Creating the Header File using the FastChip Generate Program
	Including the Header File
	Including the 'C' Header
	Including the Assembly-Language Header

	Using the Initialization Routines Created by FastChip
	Calling the 'C' Initialization Routines
	Calling the A51 Initialization Routines
	Other Header File Options
	Using the Header File in Other Modules


	Configuring the Keil Compiler/Linker
	Creating a Project
	Object File Options
	Chip Options
	Linker Options

	A51 Assembler Options

	Compiling the 'C' Program 
	Potential Pathname Problems

	Instruction-Set Simulation versus In-System Debugging
	Simulating an Application using dScope
	Starting the Debugging Session
	Configuring dScope
	Observing Register Values
	Observing Peripherals
	Observing Code Flow

	Simulating Your Code
	Resetting the System
	Starting Execution
	Stopping Execution
	Single Stepping
	Setting a Breakpoint
	Execute Until Reaching a Specific Statement
	Stepping Over a Subroutine
	Stepping Out of a Subroutine
	Setting a Register Value
	Forcing Interrupts

	In-System Debugging
	Installing Keil Debugger Support
	Connecting Keil dScope with the Triscend CSoC Device
	Problems?


	Automating dScope 
	Memory Spaces and Memory Models
	Memory Models

	Pointers
	Generic Pointers
	Memory Specific Pointers
	Comparing Memory Specific and Generic Pointers

	Interrupt Sevice Routines
	Triscend E5 Interrupts 
	Declaring Interrupt Service Routines
	C51 Declarations
	A51 Assembly Language Declarations


	Code Banking
	Common Area
	Executing Functions in Other Banks
	Code Banking on the Triscend E5
	Configuring the code banking library
	Using the code banking library

	Downloading Banks using FastChip

	Summary

