WaTriscend

Using Keil Development
Tools with Triscend FastChip
and the E5 CSoC Family

, 2000, v1.02
Abstract:

Application Note (AN-07

This application note describes how to configure and use Keil's uVision-51 and dScope-51 develop-
ment software with Triscend's FastChip CSoC Development System to create and debug Triscend E5

applications.

Introduction

Keil's pVision-51 integrated development envi-
ronment for the 8051 and their dScope simula-
tor/debugger support the Triscend E5 Configura-
ble System-on-Chip (CSoC) device family.

This application describes how to configure and
use Keil's pVision-51 and dScope-51 develop-
ment software with Triscend's FastChip Devel-
opment System to create and debug Triscend E5
applications. Some of the topics include:

= FastChip's automatic header file generation,
including automatic address assignment for
registers used in "soft" modules. FastChip
also generates initialization routines for the
dedicated resources within an E5 CSoC de-
vice. FastChip conveys this information to
Keil via a header file.

= How to configure Keil's compiler and linker
settings for optimal results. These settings
are saved within a Keil project.

= The differences between instruction-set simu-
lation (ISS) and in-system debugging.

= How to use the Keil dScope instruction set
simulator to verify logical operation.

= How to use dScope as a source-level debug-
ger with the Triscend E5 CSoC.

= What memory spaces and unique data types
are available when using Keil C51. Using on-
ly ANSI-C constructs limits the amount of op-
timization possible with the 8051 architecture.

= How to use typed and generic pointers with
C51.

= How to declare interrupt service routines in
both C51 and A51.

= How to compile programs for the 8051 archi-
tecture of up to 2 Mbytes in size. Keil's code-

banking compiler and unique features within
the Triscend E5 CSoC make it possible.

Communicating with Keil using
Header Files

The Triscend FastChip Development System
communicates with the Keil tools via a header file.
This header file is created while completing a
CSoC hardware design, using FastChip's Gener-
ate program.

The header file contains the following information.

= Register names and address assignments for
all 8032 and Triscend E5 control registers
(CRU).

= Register names and automatic assignments
for all "soft" module functions that contain
memory-mapped registers.

= [nitialization routines for all the Triscend E5
dedicated resources such as the 8032 peri-
pherals, DMA channels, etc.

Creating the Header File using the
FastChip Generate Program

After completing the E5 hardware design in Fast-
Chip, create a header file to use with the Keil
tools. FastChip automatically assigns the ad-
dress values of all memory-mapped soft module
registers during the Generate process.

Generate uses the symbolic names defined in the
design as the register variable names. Generate
then allocates the variables—in SFR or XDATA
space as specified in the design—at the Fast-
Chip-assigned address location.

To create the header file, click the Generate but-
ton from the FastChip tool bar.

© 1999-2000 by Triscend Corporation. All rights reserved.

www.triscend.com

AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family

Generate

In the resulting dialog box, click the C option to
create a 'C' header file or the Assembly option to
create a header file for assembly-language pro-
grams. Choose a location to store the resulting
header file. FastChip automatically assigns a *.h'
extension for the 'C' header file or .inc' for the
assembly header file.

Generated Language 2|

@ Assembly (A-51)
@ C (C-51)

_{‘BGenerated Source File 2|

File Name: |data‘~.Projects'~.MyDesign'~.MyDesign.h|

Browse...

v) View Generated Code

Including the Header File

A 'C' or assembly language program written for
the Triscend E5 must include the header file gen-
erated by FastChip before referring to any regis-
ters in the design. The header file contains the
register definitions and initialization routines re-
quired by the application.

Including the 'C' Header

To reference the 'C' header file created by Fast-
Chip, use the #include directive as shown be-
low.

// Include the "C" header file
// created by FastChip

#include "mydesign.h"

Including the Assembly-Language Header

The following options are not required for 'C' ap-
plications. If the project is written in A51 assem-
bly language, use the $INCLUDE directive in-
stead.

Table 1. Initialization routines for the
E5 dedicated resources, generated
automatically by FastChip.

Function Description

Executes the initializa-
tion routines for all
dedicated resources,
in the indicated order.

<design>_INITQ

Timer 0 initialization

Timer_O_INITO routine

Timer 1 initialization

Timer_1 _INITO routine

Timer 2 initialization

Timer_2_INITO routine

UART initialization

UART_INITQ outine

Interrupt controller

Interrupt INIT L .
upt_ O initialization routine

Watchdog Timer initia-

W h INIT o .
atchdog_ O lization routine

DMA controller, chan-
nel O initialization rou-
tine

DMA_O_INITQ)

DMA controller, chan-
nel 1 initialization rou-
tine

DMA_1_INITQ

Power management

Power INIT e .
- O initialization routine

project name, not the name of the header file.
For example, if the FastChip project were called
"MyDesign", the top-level initialization routine
would be called MyDesign_INIT().

Calling the top-level function created by FastChip
initializes all of the dedicated resources on the
Triscend E5 CSoC, according to the settings spe-
cified by the designer during hardware design.
The top-level function merely invokes the individ-
ual initialization routines, detailed in Table 1.

Calling the 'C' Initialization Routines

Include the A51 header file
created by FastChip

SINCLUDE (mydesign.inc)

Using the Initialization Routines Created
by FastChip

FastChip automatically generates initialization
routines for the dedicated resources available on
the Triscend E5 CSoC. The top-level initialization
routine is always named after the FastChip

/***********************************

* MAI'N FUNCTI ON

***********************************/

void main () {

[/ Call the main initialization
/'l routine defined in the
/'l included header file.

MyDesign_I NI T();

WMaTriscend

Calling the A51 Initialization Routines

The following options are not required for 'C' ap-
plications. If using A51 assembly, call the Fast-
Chip-generated initialization routines as a subrou-
tine at the beginning of the application program.

cseg ; absolute segnment at Oh
org 0000h
[jmp MAIN

; Interrupt routines go here.

; Call the main initialization
: routine fromthe header file.

MAIN: Icall MyDesign INIT

Other Header File Options

A designer could choose to write his or her own
initialization routines instead of using those auto-
matically generated by FastChip. Likewise, the
individual initialization routines for the dedicated
resources can be invoked as stand-alone func-
tions. For example, invoking UART initialization
routine, UART_INIT();, initializes just the
UART and nothing else. All of the individual in-
itialization routines are defined in the header file,
including comments that document which regis-
ters are modified.

Using the Header File in Other Modules

Many software projects contain multiple modules.
The FastChip header file defines the initialization
routines for the E5’s dedicated resources. The
main module exclusively uses these functions
and consequently the PROTOTYPE_ONLY com-
pile-time option is left undefined. Other modules
set PROTOTYPE_ONLY to avoid redeclaring these
functions.

For ‘C’ modules, the PROTOTYPE_ONLY option is
defined as shown below.

// “C” modules, other than main,
// should set the PROTOTYPE variable

#define PROTOTYPE_ONLY
#include "mydesign.h"

For A51 modules, the PROTOTYPE_ONLY option
is set as shown below.

// A51 modules, other than main,
// should set the PROTOTYPE variable

$SET (PROTOTYPE_ONLY)
$INCLUDE (mydesign.inc)

Configuring the Keil Compiler/Linker

After writing the application in Keil 'C', configure
the Keil compiler and linker options to produce
better code for the Triscend E5 family.

Creating a Project

The compiler and linker options are saved as part
of the Keil project. Before setting the compiler
options, create a new project and add the 'C'
source files.

From the Project menu, click New Project. Se-
lect the location of your project registry and enter
a name for your Keil project.

Create New Project m
File name: Folders:
Imydesign,prj cA\myproj\projec™1\mydesign

List files of type:
|Pmiec1 File (~.pri) jJ

Drives:

I = c: main j

Click OK when complete.

To add 'C' source files to the project, select
Project and then Edit Project from the menu.

E(EEN Fun Options Tools Window Help

Cirl 8
Shift+F8
Alt+Fa

EormpileEle

Make: Update Project
Make: Build Project
ake: Link Project
Download to ProROM...

New Project..
Open Project...

Edit Project...
Close Project

Once the dialog box appears, select the source
files and click Add. Click Save when finished.

Prec CAMYPROJ\PROJEC™ WVOESGNYPROSPRS)
Source Files

[add | [save |

[memove | [cancer |

[Movewr | [mep |

Translator: |[EKETETE -

[Always Build & Include in Link/Lib Object: |

. Eatal Error Warning
Bank number:
error level error level error level

Command: |

AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family

Setting the 'C' Compiler Options

To set options for the 'C' compiler, click the Op-
tions menu item and select C51 Compiler....

WS Tools Window Help
AR Assembler..

C51 Compiler...

FL/M-51 Compiler...

BL51 Code Banking Linker...
dScope Debugger...
Environment Pathspecs...
hake. .

FroROM EFROKM Emulatar...
FC-Lint Options...

Object File Options

Including debugging information in the object file
simplifies debugging when using Keil's dScope
instruction set simulator/debugger. To set options
for the object file, select the Object tab.

C51 Compiler Options (MYDESIGN_PR.J) (x|
Listing | Object | optimization | Memory Model | Chip | Misc

[C Keep variables in order
X Include debug information
X Include extended debug information
X Enable ANSI integer promotion rules
[" Generate Registerbank Independent Code

Interrupt Yectors

[Include in object Interval: |8 Offset: |0l ‘

For improved debugging visibility, choose the In-
clude debug information and the Include ex-
tended debug information options. Do not click
the OK button just yet.

Chip Options

To set options for device-specific compiler optimi-
zation, choose the Chip tab from the dialog box.
The 8032 "Turbo" microcontroller embedded with-
in each Triscend E5 CSoC device has two data
pointers, similar to the Dallas 80C320 devices.
Choose 2: Dallas (MODDP2) from the selection
drop list.

Listing | bject | Optimization | Memory Model | chip | Misc

K

Number of Data Pointers

2. Dallas (MODDP?2 -l

™ Use 80C517 Arithmetic Processor

Cancel

Default

Click OK when finished.

Linker Options

The 8032 "Turbo" microcontroller has 256 bytes
of RAM, just like other 8052/8032 derivatives. By
default, the Keil linker assumes only 128 bytes.
To change these setting, select the Options
menu item, then BL51 Code Banking Linker....

Toolz Windmw Help

AB1 dzsembler...
CH1 Campiler...

Dptions

dScope Debuagger. ..
Erironment Pathzpecs. .
Make...

ProR0OM EPROM Emulator...
PC-Ling Options. ..

Editor Colors...
Editar....
ey Assignments. ..

In the resulting dialog box, click the
Size/Location tab. Update the Ram Size (de-
cimal): setting from 128 to 256. Click OK when
finished.

BEL51 Code Banking Linker (MYDESIGN_PR.J)]
Listing | Linking fon: | Additional | Seg | Files |
Ram Size [decimal): [256 Bank Area:
Cancel |
o '] L e
Help |
Bit Address [hex): Hdata Addiess [hex):
Default |
LCode Address [hex): Idata Address [hex]:
Data Address [hex): Pdata Addiess [hex):

A51 Assembler Options

The following options are not required for 'C' ap-
plications. Though this application note is written
primarily for designers using Keil's 'C' compiler,
there are a few Keil options when using assemb-
ler.

From Options menu, select A51 Assembler....
From the resulting dialog box, click the Object tab
and clear the Define 8051 SFRs option.

A51 Assembler Options [MYDESIGH_PRJ) E3

Listing | Object | Misc |

| [+ Include debug information | " Ezclude line numbers

" Define 8051 SFRs Cancel |

Register banks used
(re a1 2z 13 ‘ _ tee |
Default |

Macio p
’7 " Digabled & Standard " MPL ‘

WMuTriscend

This prevents Keil from inserting SFR definitions
that might conflict with the ones from the Fast-
Chip generated header file.

Also, click Include debug information for im-
proved visibility during instruction-set simulation
and debugging.

Compiling the 'C' Program

To compile the 'C' program, select Project then
Make: Link Project. This step compiles and
links your 'C' program, and creates the .Hex file
and associated object files.

[Fun Options Tools Window Help \
Cirl+F8
Shift+F8

Compile File
Make: Update Project

kake: Build Project Alt+F8
hake: Link Project

Download to ProROkM

Mew Project..
Open Project
Edit Project

Close Project

Alternatively, click the Build All button from the
tool bar.

Potential Pathname Problems

The currently available version of Keil, including
the version on the Triscend FastChip CD-ROM, is
a Windows 3.1 application. Consequently, the
Keil software has problems with long path names,
specifically those containing space characters.

Keil issues the following error during compilation
if the project files are located in the FastChip
project directory.

FATAL ERROR 202: INVALID COMMAND
LINE, TOKEN TOO LONG.

The problem occurs because the full path name
to a 'C' source file saved in the default FastChip
project directory contains a space, which is an
illegal character for Windows 3.1 programs.

Fortunately, there is a work-around to this prob-
lem.

1. Move the Keil source files (*.c, *.asm, *.h,
*inc) to another directory, where the path
name no longer contains a space.

2. Modify the Keil project file to reflect the direc-
tory changes.

Table 2. Comparing Instruction-Set
Simulation and In-System Debugging.
Instruction-Set | In-System

Simulation Debugging

During software During
development, hardware/
verify logical software
operation integration

Best verification
use

Observe program
flow, set break- v v
points, set regis-
ter values

Access all memo-
ry-mapped re- v v
sources

Requires working v
hardware

Easy access to
8032's peripher- v
als

No extra hard-
ware required, v
PC only

Soft modules
function beyond
any memory- v
mapped control
or status regis-
ters

Provides true,
accurate model v
of device

Instruction-Set Simulation versus In-

System Debugging

The Keil dScope interface provides two potential
views for validating application code.

= Instruction-set simulation (ISS) offers full
logical debugging of an application, without
requiring physical hardware. The application
code executes on a model of the 8032, simu-
lated on the PC.

= In-system debugging provides true hard-
ware/software integration and testing. The
application code is integrated with real physi-
cal hardware and code executes in the actual
target environment. In-system debugging re-
quires the JTAG download cable, connected
between the PC's parallel printer port and the
dedicated JTAG pins on the Triscend E5 de-
vice.

AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family

LA dScops - cymyproivprojec 1 med esiguib Y FRO
Yuw Jatup Barphamle pp

Eibr

Reset

Commeonds Lol GoTiGuml

Stoplhd Gtepiiol StegCewr Shopl

Button

A=00 WH=un

- RO=00 Ri=00

Registers >§i-gg :;-::

Window RE-00 B -00

P = 0on7?

PaW: - -RIO---
= H i o
Cye: i}
Soc: 0. 000000

Peripheral
Model

EREEEEEEEEREEEE R
ma TA
rms EWD
rma WDIF
rmn RWT
rws Hesult
¥

[y e | 32768 Cye £ 10,92 ms

I RwT
I EWT

I wiF
T WITRF

WICON. (0x00

Ll e

“Tine ASM ASEIGN Breakieable BrakEnable
|

Figure 1. Keil dScope instruction-set simulator and debugger interface.

Table 2 outlines the major differences between
instruction-set simulation and in-system debug-
ging. Simulation is easier during code develop-
ment because no working hardware is required.
Debugging is more useful, once hardware is
available, to eliminate hardware/software integra-
tion problems.

With older 8051 devices, in-system debugging
was performed by attaching an in-circuit emulator
(ICE) to the target board. This often proved ex-
pensive and clumsy. The E5 has built-in debug-
ging hardware that provides superior debugging
capabilities via four dedicated JTAG pins on the
device, connected to a PC operating as the de-
bugging host via the JTAG download cable.

Simulating an Application using
dScope

The Keil 8051 development tools include an in-
struction-set simulator called dScope. The
dScope program does not simulate the functional-
ity of any "soft modules" implemented in the E5's

CSL logic. However, all memory-mapped regis-
ters are visible.

Starting the Debugging Session

To launch dScope from inside pVision, click Run
and then dScope Debugger.... A separate win-
dow appears for dScope.

Bun

Options Tools MWindo

e Debugger...

FCHint Diagnostic Facility
Bun Program...
Application Manager...

Various windows, shown in Figure 1, display the
status of the application and help during debug-
ging. Occasionally, not all of dScope's windows
appear on the screen. To display all dScope win-
dows, right-click the mouse button on the dScope
task in the Windows task bar. Then, click Maxim-
ize.

WMuTriscend

Configuring dScope

The dScope program requires two pieces of in-
formation to accurately simulate application code.

1. A functional model of the specific 8051 va-
riant used in the design.

2. The object file (OMF) containing the code,
variable names, and other relevant informa-
tion from the application code.

To load the functional model, click File and then
Load CPU driver... from the topmost set of me-
nus. A list of available CPU models appears.
F|=8 view Setup He
Load objectfile...

Load CFU driver...

Exit

Currently, there is no exact model for the Tris-
cend E5 "Turbo" microcontroller. However, the
model for the Dallas 80C320 is sufficiently similar
for most applications. Scroll through the list and
select the 80320.dll CPU driver. The differences
between a Dallas 80C320 and the E5's embed-
ded processor are few. The Dallas device con-
tains a second dedicated UART. Furthermore,
some instructions on the Triscend E5 execute
faster than the Dallas device. However, for vali-
dating logical execution of code, the Dallas model
is sufficient.

Eile “iew Setup Help

80320.dIl =
— |805ibcdnl ||
80151.dlIl =
80320 dll
80515 dll -

After loading the processor model, load the object
file created when the application program was
compiled. From the topmost set of menus, select
File and then Load object file....

Wiew Setup Pe

Load ohjectfile...

Load CFL driver...

E:xit

Select the object file corresponding to the applica-
tion program from the dialog box.

Select an absolute Object file ﬂ
File name: Folders:
Imydesign, c:\progra™1\trisc.. \mydesign

.
mydesign - Hel -
3 progra™1
3 tastch™~2
data

= 0 " Read only
List files of type: Drives:
IOMFfiIe =) jJ [= ¢ main |

Click OK when finished.

Observing Register Values

With the object file loaded, you can specify va-
riables that dScope should watch. Any register
declared in the header file can be watched, either
as a byte-wide or bit-wide entity. Likewise, any
variable declared with global scope is visible.

To watch a variable, use the "Command" window
to type in a "watch set" command.

ws <variable name>d

E
>ws TA
>ws EWT
>ws WDIF
>ws RWT
>ws Result
>l
/'dos ASM ASSIGN BreakDisable BreakEnable TAB [INS | -
[T 07

The "watched" values appear in the Watch win-
dow, shown below.

AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family

Many of the 8032's internal registers are visible in
the "Regs" window, including the Data Pointer
(DPTR), Accumulator (A), and the current register
bank (RO-R7). Register values that changed are
highlighted in blue. The "Regs" window typically
only updates after the processor halts execution,
reaches a breakpoint, or is single-stepped.

[A-00 B-00
RO-00 R1-00
R2-00 R3-00
R4-00 R5-00
R6=00 R7-00

DPIR - FF63
SP - 0007
PSW: ---RO-—-
5: C:40FD
Cyc: 5892847
Sec: 1.964282

Observing Peripherals

Keil's dScope instruction-set simulator provides
views into the internal operation of the microcon-
troller's peripherals. The correct peripheral simu-
lation models only appear if the 80320.dl driver is
loaded. The 80320.dIl model is designed for the
Dallas 80C320. The Triscend E5 is sufficiently
similar, though the E5 does not have a second,
dedicated UART. These peripheral models are
not available in the debugger interface driver, te5-
8032.dll, used during in-system debugging.

The following example demonstrates how to ob-
serve the operation of the Watchdog Timer. From
the topmost menus, select Peripherals, then Ti-
mer, then Watchdog.

ISCHIUETEIEN Help
I/O-Ports *
Interrupt
Timer 2 Timer 0
Setial 2 Timer 1

Cpu Conf. Timer 2
bdulti DFTR YWatchdog

The resulting window shows the current register
settings, flag values, and overall state of the
Watchdog Timer. These values can also be mod-
ified during simulation.

Watchdog Timer m

Watchdog Timer

Time-Out Period: | 2097152 Cyc / 699.05 ms jJ

Next Overflow in: I 64287 Cyc / 21.43 ms

WDCON: ||un2

[WDIF
[WTRF

[RWT
X EWT

Observing Code Flow

The code window displays the application code
and indicates the current program state. There
are three possible code views to display.

1. HLL or High-Level Language, which usually
is the 'C' source file, or the original assembly
language listing if using assembly.

2. ASM or Assembly language, which shows the
resulting compiled or assembled application
code.

3. MIXED, indicating a mix of high-level lan-
guage intermixed with the corresponding
compiled or assembled assembly-level code

Choose the desired view using the drop list in the
upper left-hand corner.

Commands

mixed j

= i

Examples of each view are shown in Figure 2,
Figure 3, and Figure 4.

Simulating Your Code

Resetting the System

Press the large Reset button in the "Toolbox"
window to restart the code. The reset button si-
mulates the conditions after the 8032 microcon-
troller is reset. In a Triscend E5, the 8032 is ac-
tively involved in device initialization and is not
reset at the end of initialization. Consequently,
some of the register contents may vary from the
simulation model.

| Reset |

WMuTriscend

Figure 4.

: Module: MYDESIGN _ [Ofx]

Commands Gol GoTilCurs! StepCutl Steplntol StepCwerl Stopl

TR | T (T e sl s S Y == =) E

-+13: EWT = 1: /7 Enable watchdog timer
19: s/ Timed-Access window closed automatically.
20:
21: 7 Most embedded applications newver stop executing. Wait foj
22: 4 Watchdoi Timer interruit to haiien.
24: %}
25:
26: ~ EEE ==X _J
27: = Watchdog Interrupt Service Routine (ISR) =
28: = The interrupt vector for interrupt number 12 is at address 0xf
29:- EEE EEE
+30: static void watchdogISR() interrupt 12
31: <7 Reset watchdog timer -- === PROTECTED BY TIMED-ACCESS WINI
+32: TA = DxAA: /7 Open the timed-access window by writing OzAA
+33: TA = Dx55: e followed by 0x55 to the TA register.
34: 77 Timed-Access window now open for three instruction cycles
4+ 35 - BWT =_1- Becet wmatrhdng timer
| |hll— |stop -]
| v

Figure 2. High-level language (HLL) view.
: Module: MYDESIGN _ (O] x|

Commands Gol GoTilCurs! StepOutl Steplintal StepOwerl Stopl

asm j IE-LI{}*I'{_}*I{'?IQJI “I@IEQI L

[rc:-20F1H #720: RET

+C : 40F 2H main:
+C : 40F 2H #B8: LCALL MyDesign_ INIT(Dz4074)
+C : 40F5H #15: MOV TA(D=C7) . #0=AA
+C : 40F 8H #16: MOV TA(D=C7) .#0=55
+C : 40FEH #18: SETB EWT (0=D8.1
C:40FFH #24: RET
+C:4100H MOV RO . #0=x7F _
+C:4102H CLR A
+C:4103H MOV @ROD . A
+C:4104H DJINZ RO.Dx4103
+C:4106H MOV SP(0x81) .#0=07
+C:4109H LJIMP main({0x40F2)
+C:410CH Power INIT:
+C:410CH #9996 : CLR A
+C : 410DH MOV DPTR. #0xFFb2
+M"-4110H MNOWVY @NPTRE A
| [asm |5tuEIL|
1] 1

Figure 3. Compiled or assembled assembly language (ASM) view.

: Module: MYDESIGN _ [Ofx]

Commands Go! GoTilCurs! StepOutl Steplnto! StepOwer! Stopl

mked_j Eq[ﬁh?ﬁ?h?l@l n|§ﬂgﬂ L
+19: s/ Timed-Access window closed automatically.
+20:
+21: 7 Most embedded applications newver stop executing. Wait foj
+22: ~# Watchdog Timer interrupt to happen.
+C : 40FBH #18: SETE EWI (0=D8.1)
+23: while (1):
+24: }

C:40FFH #24: RET _
+C:4100H MOV RO, #0=7F
+C:4102H CLR A
+C:4103H MOV BR0. A
+C:4104H DJHZ RO,.0x4103
+C:4106H MOV SP(0=z81).#0=07
+C:4109H L.JMP main(0z40F2)
+C:410CH #996: CLR A
1+ - 41 0NH MOV NPTR AN<-FFR2

|mixed |stop ~

KIN 107

Intermixed (MIXED) high-level language and compiled or assembled assembly lan-
guage view.

AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family

Starting Execution

To start program execution, click the Go! menu
item or its corresponding menu bar icon.

+ Module: MYDESIGN
GoTilCurs! StepOutl Steplntal

[[Y =)

Once the program starts running, the values
change in any open peripheral window and in the
Watch window. The register window, "Regs",
may not update until the processor is halted.

Commands

[hil

StepOwerl Stopl

Stopping Execution

To stop the program, click the Stop! menu item or
its corresponding menu bar icon. The code view-
ing window displays the next instruction to be ex-
ecuted once code execution resumes.

+ Module: MYDESIGN
Gol GoTilCurs!

Commands Steplntol StepCiye

StepOut!
o

After clicking the Stop! button, all windows should
stop updating. Any changed registers are hig-
hlighted in the "Regs" window.

Single Stepping

To single step through the program, click the
StepInto! menu item or its corresponding icon on
the tool bar. Again, the code viewing window dis-
plays the next instruction to be executed once
code execution resumes. Likewise, any changed
registers are highlighted in the "Regs" window.

+ Module: MYDESIGN

Commands

hil

Gol GoTilCurs! StepOutl

CIEE

StepOwerl Stopl

Setting a Breakpoint

A program can execute until it reaches a desired
line of code by setting a breakpoint. To set a
breakpoint, double-click the mouse while the cur-
sor is pointing to the desired statement. A
“[BR Q]" indicator appears to the right of the
statement indicating that Breakpoint O is set.

: Module: MYDESIGN o] x]
Commands Gol GoTiCurs! StepQutl Steplnto! StepOverl Stop!

T | i ol o v [= = 2l
[+33 TA = D=x55; ks followed by 055 to the TA register.

34 -7 Timed-Access window now open for three instruction cycles
35 RWT = 1: /7 Reset watchdog timer

36 /7 Timed-Access window closed automatically.

37

38 77 Increment the value in the Result register. The Result
39 s/ is connected to the two 7-segment LED displays on the Eva
40 /7 Board. Logic in the CSL matriz converts the binary value
41 s, Result to two hexadecimal digits on the LEDs. =
43

14 ~# Clear watchdog interrupt -- === PROTECTED BY TIMED-ACCESS
[+ 45 Th = OzAA: -/ Open the timed-access window by writing OzAA
[+46 TA = D=x55: ks followed by 055 to the TA register.

47 ~/ Timed-Access window now open for three instruction cycles
+48 WDIF = 0 77 Clear the watchdog interrupt flag

49 77 Timed-Access window closed automatically.

50

[Jhil \slniﬁl
] G

Click the Go! button. The program should ex-
ecute until it reaches the breakpoint. Single-step
the program and observe any watched variables
in the Watch window. Click Go! to resume ex-
ecuting code. Again, the program executes until
it reaches the breakpoint.

Execute Until Reaching a Specific
Statement

A program can execute until it reaches a particu-
lar line, without setting a breakpoint. Use the Up
and Down keys or the mouse to point to the de-
sired statement. Don't double-click on this line,
otherwise a breakpoint will be set.

Click on the GoTilCursor! menu item or the cor-
responding icon from the menu bar.

+ Module: MYDESIGN

Commands

[hil

Gol StepOutl Steplnto!
I | i o E A =

The program executes until it reaches the speci-
fied line.

StepOwverl Stopl

+ Module: MYDESIGN
Commands Gol GoTilCurs! StepQufl Steplntal StepCver! Stop!

[N BT R kR o Y =

77 Timed-Access window closed automatically.

o]
B|

77 Increment the value in the Result register. The Result
s/ is connected to the two 7-segment LED displays on the Eva
77 Board. Logic in the CSL matrix converts the binary value

41; ~/ Result to two hexadecimal diiits on the LEDs.

Ve Clear watchdog interrupt -- === PROTECTED BY TIMED-ACCESS
TA - /7 Open the timed-access window by writing OxAA
A = t|x55 s followed by 0%55 to the TA register.

s/ Return from interrupt and continue to wait for next Watch

/7 interrupt.
Jhil ‘S[UE';I
AP

10

WMuTriscend

Stepping Over a Subroutine

One additional function is a bit more difficult to
demonstrate. The StepOver! function steps over a
subroutine or function, without actually stepping
through all the statements in the underlying rou-
tine. To see how this function operates, press the
big Reset button in the "Toolbox" menu.

[Reset |

Single-step until you reach a statement that calls
a subroutine.

: Module: MYDESIGN _[ofx]
Commands Gol GoTilCurs! StepOufl Steplntol StepOwverl Stopl

LTI 5 5 i [B E =3 =) 2l

3:

4: Ve

5: = MAIN FUNCTION

6:

7:

8: void main () {

9:

10: /7 Call the main initialization routine defined in the

11: ~/ included header file. =

13:

14: +/ Enable watchdog timer -- === PROTECTED BY TIMED-ACCESS WIY

15: TA - 0xAA: /7 Open the timed-access window by writing OzAh

16: TA - 0x55: // followed by 0x55 to the TA register.

17: #7 Timed-Access window now open for three instruction cycles

18: EWT = 1; #/ Enable watchdog timer

19: // Timed-Access window closed automatically.

20
I [hll |stop
P >|‘I¢

Skip the dreary details of the subroutine by step-
ping over it. Click the StepOver! menu item or its
corresponding icon from the menu bar.

+ Module: MYDESIGN

Clicking the button executes the subroutine and
then advances the program flow to the next in-
struction to be executed, skipping the instructions
within the subroutine.

Stepping Out of a Subroutine

A similarly useful function is StepOut!, which es-
capes out of subroutine. To see how this function
operates, again click the big Reset button and
single-step until you reach a statement that calls
a subroutine. Single-step to enter the subroutine.
To execute the remainder of the subroutine and
effectively escape from it, click the StepOut!
menu item or its corresponding icon in the menu
bar.

+ Module: MYDESIGN

Commands Gol GoTilCurs! Steplntol

TR B (B e i e S N = =)

As before, the program proceeds to the next in-
struction to be executed.

StepOwver Stopl

Setting a Register Value

To set a register's value, type in a valid 'C'-style
statement in the Command Window. For exam-
ple, to set a register called Result to all one's,
type the following statement in the Command
Window. The trailing semi-colon is optional in
Keil.

Result = Oxff

You should see the corresponding value change
in the Watch window.

(00) Ta

: 0xFF

TE b

Forcing Interrupts

Setting an interrupt flag is helpful when debug-
ging an interrupt service routine (ISR). For ex-
ample, to invoke an interrupt service routine
created for the Watchdog Timer, the Watchdog
Interrupt Flag (WDIF) could be set using the
Watchdog Timer peripheral window, as shown
below.

Watchdog Timer m

Watchdog Timer

Time-Out Period: | 2097152 Cyc / 699.05 ms j

Next Overflow in: I 660550 Cyc / 220.18 ms

WDCON: II])(I]A

[RWT
X EWT

In-System Debugging

After creating the hardware and writing the appli-
cation software, it would usually be time to lug out
the in-circuit emulator (ICE) or logic analyzer.
Fortunately, the FastChip Development System
provides a much more modern and self-
contained, in-system debugging environment.
Using Keil and FastChip, a Triscend E5 design
can be debugged

= In system,
= Operating at full speed,

= With all of the other system hardware and
software!

11

AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family

Keil's dScope, in conjunction with FastChip and
the JTAG download cable, provides source-level
debugging. The same dScope package used
earlier to simulate an application program can
also be used to talk directly with working silicon,
using a different CPU driver. The debugger mode
behaves slightly differently than the instruction-set
simulator mode. Some of the menu items availa-
ble during simulation are not available during in-
system debugging, specifically the Peripheral op-
tions.

Installing Keil Debugger Support

If you install FastChip, then later install Keil from
another source, you need to copy the appropriate
DLL to run the Keil debugger. First, follow these
steps to copy the DLL:

1. Locate the 8032-te5.dll file in the \apps direc-
tory on the FastChip CD-ROM.

2. Copy this file to the Keil \Bin directory.

The TCP/IP protocol must be installed on the host
PC in order to use the Keil dScope debugger or to
download a design from FastChip.

Connecting Keil dScope with the Triscend
CSoC Device

Before using the Keil debugger, recompile the
source code and create a .Hex file.

Then download the full design to the Triscend E5
device by clicking the Download button in Fast-

Chip.
S

Download

If you don't perform these steps, the Keil object
file used by the debugger may not match the de-
sign actually downloaded into the Triscend E5
device. This will cause strange behavior.

After successfully downloading the design, leave
FastChip running.

Invoke the Keil dScope debugger.

To interface Keil's dScope program directly to the
E5 CSoC device, load the special Triscend CPU
driver included on the FastChip CD-ROM. This
CPU driver turns the Triscend JTAG download
cable into a real-time source-level interface con-
nected to the operating application. From the
dScope menu, click File followed by Load CPU
driver....

WIEN View Setup He
Load chjectfile...

Load CPLU driver. .

Exit

Instead of the driver used to simulate the 80C320
microcontroller select the Triscend E5 driver
called 8032-te5.dll. If this driver does not appear,
see "Installing Keil Debugger Support".

Wiew Setup Help

8032-te5.dll ~|

“|80552_dll
g0410.dil
B d

rism51.dll

The Triscend driver connects to the JTAG Down-
load Cable, and ultimately your hardware, via a
TCP/IP connection. Because the JTAG download
cable uses TCP/IP, an application can be devel-
oped on computer and then downloaded via a
local network or the Internet to another PC in your
lab or at a remote location.

FY

-

If dScope is running on the computer connected
directly to the target hardware, keep the default
values for the host name and port settings. Oth-
erwise, change the host name to the name of the
computer running FastChip.

To connect, click the Connect button.

TCP{IP Configuration | x|

FRemote Server

Hostname: |[:f=:1]{F5

Port: |5mm

¥ Use Fast Protocol

Connect I | Cancel I

12

WMuTriscend

Load the object file for the application. Click File
followed by Load object file....

“Wiew Setup Pe

Load ohjectfile...

Load CPLI driver...

Exit

Select the object file from the resulting dialog box.
Once the object file is loaded, the target applica-
tion may halt operation.

Select an absolute Object file n
File name: Folders:
Imydesign. c:\progra™1itrisc...\mydesign

.
mydesign N =AY -
3 progra™1
9 fastch™2
£ data
o [C Read only
: ,
List files of type: Drives:
IOMFﬁIe =) J [= e main =l

After following these steps, the Keil dScope pro-
gram is intimately connected to the Triscend E5
CSoC device. The dScope functions used during
instruction-set simulation also operate while per-
forming in-system debugging. The only exception
is that the peripheral models available in the
80320.dll CPU driver are not available in the
8032-te5.dll driver.

Problems?

If you have problems connecting the Keil source-
level debugger to the Triscend E5 development
board, possible causes range from the Windows
NT service pack version to whether the TCP/IP
protocol driver is installed on your computer.

Investigate possible solutions by visiting the on-
line Triscend SupportCenter web site.

Automating dScope

Typing commands and selecting menu items dur-
ing debugging can be tedious, especially during a
repetitive debug cycle. Fortunately, dScope can
execute an initialization file when invoked.

The dScope initialization file below is saved as
mydesign. ini and performs the following func-
tions ...

= Loads the 80C320 driver, which is similar to
the 8032 "Turbo" microcontroller

= Loads the object file for ‘MyDesign’

= Defines two buttons. When pressed, one
button executes code until reaching main(),
the other executes code until reaching the
Watchdog Timer interrupt service routine

= Displays two variables, Result and WDCON,
in the Watch window

= Initializes the Result register with Ox4a

/* Load 80C320 driver, similar to E5 */
load 80320.dlI1

/* Load the object file */
load mydesign

/* Define buttons */

/* Go until reaching main() */

define button "Go til main()", "g,main"

/* Go until reaching the Watchdog ISR */

define button "Go til wdt_isr(Q)",
"g,watchdoglISR"

/* Setup Watch window */
ws Result
ws WDCON

/* Define contents of Result register */

Result=0x4a

An option available within pVision automatically
executes the initialization file whenever dScope is
invoked. To set the option, select the Options,
then the dScope Debugger menu items.

dScope Debugger Options [MYDESIGH_PRJ]

Browse. .. |

dS cope Inmtalization File:
[MYDESIGN.INI

[ox]

Type in the name of the initialization file and click
OK when finished.

Memory Spaces and Memory Models

The Keil compiler provides access to all memory
areas associated with the E5's embedded 8032
microcontroller. The various memory areas and
data types are shown in Table 3. Each variable
can be explicitly assigned to one of these specific
memory spaces or data types.

Cancel | Help |

The sbit, sfr, and sfrl6 data types provide
access to the Special Function Registers (SFRs)
available on the 8051. These entities are specific
to the 8051 architecture and the Keil C51 compi-
ler. They are not a part of ANSI C and cannot be
accessed through pointers.

13

http://www.triscend.com/supportcenter.com�

AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family

Table 3. Memory and Data Types for the
8032 "Turbo" Microcontroller.

An sbit variable can be declared either using its
absolute address, or using the bit’'s position within

Memory | Size another declared sfr location. For example, if a
Type (bytes) Description “soft” module for 8032 port PO is added to the
The bit-addressable re- design, bit 3 of the byte-wide port PO can be de-
sbit 16 gion of the 8032's Special clared using the following statement. The PO
Function Registers SFR is already declared in the header file.
Ssfr 10g | The 8032's Special Func- | [Declared in FastChip header file
tion Registers ;. sfr PO = 0x80;
Two Special Function - S A o
sfril6 64 Registers treated as a 16- Sbit mybit = PO * 3;
bit integer Registers located within most "soft" modules can
Program memory; ac- either be located in the microcontroller's SFR
caK | cessed by opcode MOVC | space (sfr) or XDATA space (xdata), which is the
code (per @A+DPTR. Effective default. FastChip's Generate utility uses the
bank) | 0U€ space can be in- symbolic names defined in the design as the reg-
creased using code bank- | ister variable names. Generate then allocates the
Ing. variables in SFR or XDATA space as specified in
Directly addressable in- the design, at the FastChip-assigned address
data 128 ternal data memory; fast- location.
est access to variables. . , ,
Indirectly addressable In the resultllng C' header file, the syrnboh_c ad-
- dat internal data memory: dress of a smg_le-byte soft-module reglster_ls de-
1data 256 | . ccessed across the full clared as a variable of type of sfr or unsigned
internal address space. chgr, as shown in Tgble 4. Similarly, the sym-
Bit-addressable internal bolic address of a multiple-byte soft-module regis-
bdata 16 data memory; allows ter is declared as an unsigned char array.
mixed bit and byte ac- In the assembly header, each symbolic address is
CesSes. declared as a label to the starting address. Mul-
External data memory (64 | tiple-byte registers must be accessed by incre-
Kbytes); accessed by menting the data pointer from the label, byte by
opcode MOVX @DPTR. byte.
Used to access the E5's
xdata 64K Configuration Register Other variables used in the 8032 application pro-
Unit (CRU), on-chip gram can be similarly located within specific
SRAM, and "soft" module memory spaces by including a memory type spe-
registers defined in xda- cifier in the variable declaration.
ta space. Accessing internal data memory and SFRs is
Paged (256 bytes) exter- | considerably faster than accessing external data
nal data memory; ac- memory. Consequently, place frequently used
pdata | 256 | cessedbyopcode MOVX | variables in internal data memory and less fre-
@Rn. This memory type quently used variables in external data memory.
is not recommended on) . ,)
the Triscend ES5. As with the signed and unsigned attributes, you
may include memory type specifiers in the varia-
ble declaration.
Table 4. Declarations for "Soft" Module Registers from FastChip.
FastChip
Address Space Resulting Declaration in Header File
SFR sfr <symbolic name> <location>;
XDATA unsigned char xdata <symbolic name> _at_ <location>;

<symbolic name> = The symbolic name specified by the user in FastChip.
<location> = The address location allocated by FastChip's Generate utility.

14

WMuTriscend

If the memory type specifier is omitted in a varia-
ble declaration, the default or implicit memory
type is automatically selected. Function argu-
ments and automatic variables that cannot be
located within the processor's registers are also
stored in the default memory area.

As shown in Table 5, the default memory type is
determined by the memory model specified in the
compiler options.

Table 5. Memory Models and
Default Memory Types.

Memory Model | Default Memory Type
Small, default data
Large xdata

pdata
e (not recommended)

Memory Models

The memory model determines the default mem-
ory type used for function arguments, automatic
variables, and variables declared with no explicit
memory type. By default, Keil assumes the Small
memory model, which is recommended for most
applications. The default memory type can be
overridden by explicitly declaring a variable using
a memory type specifier.

The memory model option is located in the C51
Compiler Options dialog box. Click the Memory
Model tab and select the desired model from the
drop list.

C51 Compiler Options [MYDESIGH.PRJ) | x|
Listing T Object T Optimization T Memory Model I Chip | Misc |

LCode size limits
=]

Cancel |

Help |

Default |

| Large: 64K Functions

Memory model [variable location]

Large: variables in XDATA

Always use the small memory model, unless the
application will not fit or operate using the small
model. The small model generates the fastest,
tightest, and most efficient code. Variables within
the application can always be explicitly specified
to reside in other memory spaces.

In the Small model, all variables default to the
128 bytes internal data memory within the 8032.
This is equivalent to explicitly declaring all va-
riables with the data memory-type specifier. Va-
riable access is fast and very efficient, though all
data objects, including the stack, must fit within

the microcontroller's 128 bytes of RAM. Stack
size is critical because the stack space used de-
pends upon the nesting depth of the various func-
tions. Typically, if the BL51 code banking link-
er/locator is configured to overlay variables in the
internal data memory, which is the default, the
Small model is the best model to use.

With the Compact model, all variables default to
one page of external data memory, equivalent to
explicitly declaring all variables with the pdata
memory type specifier. This model is not recom-
mend for E5 CSoC applications. Use the large
memory model instead. This memory model ac-
commodates a maximum of 256 bytes of va-
riables. The limitation is due to the indirect ad-
dressing scheme used via registers RO and R1.
Though the compact model is faster than the
large model, the compact model is awkward on
the E5 CSoC.

In the Large model, all variables default to exter-
nal data memory, equivalent to explicitly declaring
all variables using the xdata memory type spe-
cifier. The data pointer (DPTR) is used for ad-
dressing, though memory accesses are ineffi-
cient, especially for variables with a length of two
or more bytes. The large memory model gene-
rates more code than the small or compact mod-
els.

The C51 compiler supports pointer declarations
using the asterisk character (‘*"), similar to ANSI-
C. However, due to the 8051's unique architec-
ture, the C51 compiler supports two different
types of pointers:

= Generic pointers

= Memory specific pointers

Generic Pointers

Generic pointers are declared similar to standard
ANSI-C pointers.

char *s; /* string pointer */

int *numptr; /* int pointer */

long *state; /* long pointer */

Generic pointers are always stored as three-byte
values. The first byte indicates the memory type,
while the second and third bytes store the high-
order byte and the low-order address byte re-
spectively.

15

AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family

[J
[)
[)
(" ox5d
0x5¢
» | 0x5b|usigned char
§< Ox5a
3) ox59
< | oxs8
0x57
L 0x56
o
[)
°
data

1 *my_ptr=0x5b

Xdata

lunsi gned char |data * xdat a [my_ptr=0x5b; |

item_type mem_type item * mem_type ptr ptr_name [= address];

Figure 5. A typed pointer, located in xdata memory, pointing to an unsigned character in data

memory.

Generic pointers can access any variable, regard-
less of its location in 8051 memory space. Con-
sequently, many library routines use generic poin-
ters because a function has access to data re-
gardless of the memory type where it is stored.

Declare the memory area in which the generic
pointer is stored by using a memory type specifi-
er. The variables referenced by these pointers
may reside in any memory area. However, the
pointers themselves reside in the specified mem-
ory area.

Memory specific pointers always define a memory
type in the pointer declaration and always refer to
a specific memory area.

/* pointer to string in data */
char data *str;

/* pointer to int(s) in xdata */
int xdata *numtab;

/* pointer to long(s) in code */
long code *longtab;

/* string pointer in xdata*/
char * xdata s;

/* int pointer in data*/

int * data numptr;

/* int pointer in idata*/
long * idata state;

Memory Specific Pointers

Memory specific pointers are more memory effi-
cient than generic pointers. Typed pointers are
stored using only one byte (idata, data, bdata,
and pdata pointers) or two bytes (code and
xdata pointers) because the memory type is
specified at compile-time. The memory type byte
required by generic pointers is not necessary for
typed pointers.

By default, pointers are stored in the default
memory type, which depends on the memory
model used during compilation. However, typed
pointers themselves can have a memory type
specification, as shown in Figure 5.

= item _type is the type of item pointed to,
one of the usual 'C' data types such as
signed or unsigned char, int, long,
float, etc.

= mem_type_item is the memory type specifi-
er defining where the referenced item resides
in memory, of type code, data, idata, or
xdata.

= mem_type_ptr is the memory type specifier
defining where the pointer to the item resides
in memory, of type code, data, idata, or
xdata.

WMuTriscend

Table 7. Comparing Typed and Generic Pointers.

idata Pointer

xdata pointer

Generic Pointer

Space

char idata *ip; char xdata *xp; char *p;
Sample 'C' Program char val; char val; char val;
val = *ip; val = *xp; val = *p;
MOV DPL,xp +1 MOV R1,p + 2
Generated 8051 Assem- | MOV RO, ip MOV DPH,xp MOV R2,p + 1
bly Code MOV val,@RO MOV A,@DPTR MOV R3,p
MOV val,A CALL CLDPTR
Pointer Size, Space 1 byte, data 2 bytes, data 3 bytes, data
Generated Code Size, 4 bytes, code 9 bytes, code 11 bytes, code

(plus library function)

Execution Time

4 instruction cycles
16 bus clock cycles

7 instruction cycles
28 bus clock cycles

13 instruction cycles
52 bus clock cycles

= ptr_name is the variable name for the poin-
ter.

= address is an optional initialization value for
the pointer, which must be a legal value for
the memory space defined by
mem_type_item. For example, data
space is 128 bytes and a pointer to data
space must be between 0x00 to Ox7F.

Comparing Memory Specific and Generic
Pointers

Using memory specific pointers can significantly
accelerate a 'C' program targeted to the 8051 ar-
chitecture. Table 7 shows the differences in code
and data size and execution time for pointer de-
clared in idata space (fastest, smallest), xdata
space, and generic pointers (slowest, largest).

Interrupt Sevice Routines

The Triscend E5 has 12 interrupt sources. Writ-
ing the corresponding interrupt service routines
(ISR) in Keil 'C' requires some special syntax,
including the Keil interrupt number.

Triscend E5 Interrupts

Table 6 shows the interrupts available on the E5's
embedded 8032 "Turbo" microcontroller. The
table also indicates the Keil interrupt number and
the corresponding interrupt vector address. The
interrupts always appear in the 8032's 16-bit logi-
cal code space. The interrupts are listed from
highest to lowest priority. The shaded interrupts
are those associated with hardware debugging
and not normally applied in end-user applications.

Declaring Interrupt Service Routines
C51 Declarations

To create an interrupt service routine (ISR) in Keil
'C', declare a static void function using the in-
terrupt keyword and correct interrupt number.

The Keil 'C' compiler automatically generates the
interrupt vector plus the entry and exit code for
the interrupt routine. The interrupt function
attribute tags the function as an ISR. Optionally,
specify which register bank the ISR utilizes with
the using attribute. Valid register banks range
from O to 3.

Table 6. Vector locations for
interrupt sources.

Keil Vector

Source Intr. # | Address
High-Priority 6 0x0033
Interrupt
External Interrupt O 0 0x0003
Timer 0 Overflow 1 0x000B
External Interrupt 1 2 0x0013
Timer 1 Overflow 3 0x001B
Serial Port 4 0x0023
Timer 2 Interrupt 5 0x002B
DMA 7 0x003B
Hardware
Breakpoint g R
JTAG 9 0x004B
Software Breakpoint 10 0x0053
Watchdog Timer 12 0x0063

17

AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family

The example below declares the interrupt service
routine for the Timer 0—Keil interrupt number 1—
and uses register bank 2.

static void TO_ISR(void) interrupt 1
using 2 {

3

A51 Assembly Language Declarations

In assembly, interrupts are declared by their ab-
solute address. For example, the Timer 0O inter-
rupt service routine starts at 0x000B, the interrupt
vector shown in Table 6. An interrupt service rou-
tine always returns using the "return from inter-
rupt" instruction, RETI, and not the instruction
normally used to return from a called subroutine.

;. TIMER O | NTERRUPT SERVI CE ROUTI NE
; Timer O appears at 0xO000B.

org 000Bh
[jmp TO_I SR

; Call the main initialization
; routine defined in the
;1 ncluded header file.
TO | SR
; interrupt service routine
; goes here

reti

Code Banking

Most 8051 application programs are limited to
64K bytes, the maximum address range sup-
ported by the 8051's 16-bit code space. Howev-
er, Keil's BL51 code banking linker/locator sup-
ports building application programs larger than
64K bytes. Special hardware within a Triscend
E5 CSoC device allows the embedded 8032 mi-
crocontroller to access up to 16M bytes of code
space, though the Keil linker supports only 2
Mbytes. The special hardware, called code map-
pers, allows the 8032 to swap between multiple
banks of code, each bank 64K bytes in size. The
code mappers must be controlled by application
software in a process called bank switching.

The Keil BL51 code banking linker/locator man-
ages one common area and up to 32 separate
banks of up to 64K bytes, totaling 2M bytes of
bank-switched program space. Software support
for bank switching hardware includes a short as-
sembly file targeted for the Triscend E5.

To create very large and efficient applications,
carefully group functions in the different banks.
Locate particular program modules to specific
banks in order to minimize bank switching.

Common Area

In a bank-switching program, the common area is
a region of memory accessible at all times from
all banks. The common area must always be
available and cannot be physically swapped out
or moved around. The code in the common area
is duplicated in each bank.

The common area contains program sections and
constants that must be available at all times. It
may also contain frequently used code, to minim-
ize bank switching. By default, the following code
sections are automatically located in the common
area:

Reset and interrupt vectors

Code constants

C51 interrupt functions

Bank switch jump table

Some C51 run-time library functions

Executing Functions in Other Banks

The Keil code-banking linker—in conjunction with
the Triscend-supplied 151_bank routine—selects
a particular code bank by programming the E5's
CMAP1 code mapper with the base address of
the target code bank. The Keil code-banking
linker automatically generates a jump table for
functions located in other code banks.

When the application code calls a function in a
different bank, the program switches to the other
bank and jumps to the desired function. When
the function completes, the program restores the
previous bank and returns execution to the calling
routine.

The bank switching process requires approx-
imately 50 instruction cycles and consumes two
additional bytes of stack space. To improve sys-
tem performance, group interdependent functions
in the same code bank. Functions frequently in-
voked from multiple banks should be relocated to
the common area.

Code Banking on the Triscend E5

FastChip includes a modified version of the Keil
code-banking library that takes advantage of the
E5's code mappers. The Keil code-banking

18

WMuTriscend

scheme supports up to 32 code banks, each 64
Kbytes in size. The common code area is re-
peated in each bank. Please refer to the Keil do-
cumentation for more information about the Keil
code banking support. Additional information is
available from the comments in the Triscend
code-banking library source-code.

Configuring the code banking library

The code-banking library has two constants that
might require modification, depending on the
project.

?B_NBANKS — the number of banks sup-
ported (default is 16, maximum of 32).

?B_RTX — set to 1 when using Keil's RTX-51

FULL operating system; otherwise set to 0
(default is 0).

?B_NBANKS must be set equal to or greater than
the number of code banks, otherwise link errors
will occur. Setting ?B_NBANKS to a value larger
than the number of banks required results in
some wasted code because the library generates
code to switch to the unused banks. If the appli-
cation is highly sensitive to code size, then set
?B_NBANKS to exactly match the number of
banks required.

Using the code banking library

Follow these steps to use the code-banking li-
brary:

1. Archive the existing 0151 bank.a51 file
found in the C51/LIB directory to a different

file name or another directory.

Copy the Triscend 151 bank.a51 and
151 bank.obj files from the Fast-
Chip1999/Keil/Codebank directory the
C51/LIB directory.

If necessary, edit the 151 _bank.a51 file to
change the configuration settings. Then, as-
semble the changes using the following
command to create a new 151_bank.obj file:

abl 151 bank.a51

to

The library is now ready to use when linking the
application with the BL51 Code Banking Linker.
Set the following options in Keil's pVision devel-
opment environment. Select Options, then BL51
Code Banking Linker... from the menu.

From the resulting dialog box, select the Linking
tab. Choose the option Code Banking under
Target Options.

BL51 Code Banking Linker (MYDESIGN_PRJ) [x]

Listing T Linking r SizefLocation TAdditionaI T Segments T Files]

Debug Information 0K

|7|7 Include local symbols

Target Options

Cancel

[¥ Include public symbols
Help

[~ RTX51 Liny

¥ Include line numbers

Ul

Default
" Ignore default libraries

[¥ Enable variable overlaying

Click OK when finished.

Now select Options, then Make... from the
menu. Click the After Compile tab from the re-
sulting dialog box. Select the Run BL51 Banked
Linker option, and enable the Run OC51 Object
Converter and Run OH51 Object Hex Conver-
ter options.

Make Options [MYDESIGN.PRJ) [x]

er After Make T Misc T Extensions]

After Compile

" Stop

[% Run BL51 Banked Linker |
" Run LIBS1 Librarian

Cancel

Help

¥ Run OC51 Object Converter
[¥ Run OH51 Dbject Hex Converter

Default

ddlld

Click OK when finished.

Downloading Banks using FastChip

After compiling and linking a code-banked appli-
cation, Keil creates multiple .Hex files, one for
each 64K-byte bank.

To download multiple code banks to the Triscend
E5, invoke FastChip and click on the Download

button.
S

Download

19

AN-07: Using Keil Development Tools with Triscend FastChip and the E5 CSoC Family

Once the download dialog box appears, perform
the following steps.

| (1)P Application Object Cade 2| =]
Use Bank Switching ®
~Number of Code Banks: | 3/3] e
Intel HEX File Name for Bank 0: <intel HEX File Name for Bank 0:> ESJ“M“_ =]
Intel HEX File Name for Bank 1: [<inte/ HEX File Name for Bank 1> | fjBrowse..
Intel HEX Flle Name tor Bank 2: [<inte/ HEX File Name for Bank 2> | FojBrowse... |5 _|
“Momwb.\ﬂu: Flash Memory -@
Program
& Direct Pragram
@ Generate HEX File: [<Output HEX Fife Name> | Fojprowse... .
| (0|

1. Enable the Use Bank Switching option.

2. Specify the Number of Code Banks to be
downloaded.

3. Select the .Hex files for each bank. Bank 0 is
always the bank executed at start-up. Each
bank is loaded at a successive 64K boundary
in memory.

4. Choose the appropriate Memory Device for

download. Only external byte-wide memories
are applicable for code banked applications.

5. Choose the Program download method. Ei-
ther program the E5 CSoC device directly, or
save the image as a new, combined .Hex file
to be programmed into an external memory

device using an external programmer.

Click OK when finished to start the download-
ing process.

Triscend's FastChip development system inti-
mately supports features available in Keil's 8051
development software.

Using the full capabilities of the Keil compiler,
code-banking linker, and dScope debugger, a
designer can create fast and efficient application
programs for the Triscend E5 CSoC devices.

Revision History

Revision Date Comment
1.00 22-DEC-1999 | First release.
1.01 6-JAN-2000 Minor formatting and wording changes.
1.02 11-JAN-2000 | Corrected various spelling errors.

Triscend, the Triscend logo, and FastChip ™ are trademarks of Triscend Corporation. Adobe Acrobat is a trade-

mark of Adobe Systems, Inc.

Microsoft, Windows, Microsoft Java Virtual Machine, and Internet Explorer are

trademarks of Microsoft Corporation. Netscape Communicator is a trademark of Netscape Communications Cor-
poration. Pentium is a Trademark of Intel Corporation. I°C™ or Inter-Integrated Circuit Bus is a trademark of Phi-
lips Semiconductors. All other trademarks are the property of their respective owners.

WaTriscend

Triscend Corporation
301 N. Whisman Rd.
Mountain View, CA 940403-3969

Tel:

1-650-968-8668 x166

Fax: 1-650-934-9393

E-mail: contact_us@triscend.com
Web: www.triscend.com

20

ANO7

Using Keil Development Tools with
Triscend FastChip and
the ES CSoC Family

— Table of Contents —

1N 200] 5 11T 1] N PSS
COMMUNICATING WITH KEIL USING HEADER FILES ...cotttiiiiiiiiiiiiiiiiie s seeeiates e e e e e e eatta s s e e e s s eeaann s e e e e s eannnnn s
CONFIGURING THE KEIL COMPILER/LINKERuttttttteesissittteeeeeteessassnteneseseesssasssssssssessssanssssnssssessssnnssssnesseesnns
COMPILING THE "C' PROGRAMcttttiiiititttattitieseaeteestatansaeeaaeatssaa e aaaaseestss e aaaeeeastaaaaeaeseestasanteeesaeessrann s
INSTRUCTION-SET SIMULATION VERSUS IN-SYSTEM DEBUGGINGcuvuvuveininininieinrnrnrnrnrnnnenrninrnrnrnmnnnnnnnn.
SIMULATING AN APPLICATION USING DS COPE......cccttettttuuieeeeetetttunaasaeeseeatntaaaeasesssstnnaeaassessnnnaeeaesessnns
SIMULATING YOUR CODEceiiieiiiiieieieiei et ettt et et et et et et et et et et et ettt et et et ettt et et et ee et et ee st e s eeasaesesssssssssssnnsnsnsassnssnnnnnnnnns
IN-SYSTEM DEBUGGINGcccutuuuieieeetiettutiieseeeteteattaaaeseeeseestataaeeaeeeasttaaaaaaaeeestenannaaaeeesastannaeeaesenssnnnnnsaaarees
AUTOMATING DSCOPE ...itttttuuuieieeettettutisseeeteessstaaeeaeesestas o aaaateettstaeteeeatttanaaaaterstanaaaeteestnraeereernnn
MEMORY SPACES AND MEMORY IMODELSuutvttteeessiisteteeeseeesssssssteneeeeesssansssssneseeessssnsssssnseseessssnsssssereeeesann
P OINTERS ...ttt e ettt e et e e et e et e e e et e et e — e e e e et e ettt e ee e et ettt e aaeeeeeeeaa i aaaaaaans
INTERRUPT SEVICE ROUTINES. .. uuuuuuuuuuututttuuuussnnnnnsnnnnsnnnnsasnsssssnnssssnsnsnsnsnsssnsnsnsnsssnsssnnnsnsnsnnnsnsnsnnnnnnnnnnnnnnnnnn
L0705] = = 7N 111 USRS
SUMMARY .iiiiiieie i et ettt ettt ettt ettt ettt ettt ettt ettt et ettt ettt ettt ttt——aaatatatatataraaes

WaTriscend

	Introduction
	Communicating with Keil using Header Files
	Creating the Header File using the FastChip Generate Program
	Including the Header File
	Including the 'C' Header
	Including the Assembly-Language Header

	Using the Initialization Routines Created by FastChip
	Calling the 'C' Initialization Routines
	Calling the A51 Initialization Routines
	Other Header File Options
	Using the Header File in Other Modules

	Configuring the Keil Compiler/Linker
	Creating a Project
	Object File Options
	Chip Options
	Linker Options

	A51 Assembler Options

	Compiling the 'C' Program
	Potential Pathname Problems

	Instruction-Set Simulation versus In-System Debugging
	Simulating an Application using dScope
	Starting the Debugging Session
	Configuring dScope
	Observing Register Values
	Observing Peripherals
	Observing Code Flow

	Simulating Your Code
	Resetting the System
	Starting Execution
	Stopping Execution
	Single Stepping
	Setting a Breakpoint
	Execute Until Reaching a Specific Statement
	Stepping Over a Subroutine
	Stepping Out of a Subroutine
	Setting a Register Value
	Forcing Interrupts

	In-System Debugging
	Installing Keil Debugger Support
	Connecting Keil dScope with the Triscend CSoC Device
	Problems?

	Automating dScope
	Memory Spaces and Memory Models
	Memory Models

	Pointers
	Generic Pointers
	Memory Specific Pointers
	Comparing Memory Specific and Generic Pointers

	Interrupt Sevice Routines
	Triscend E5 Interrupts
	Declaring Interrupt Service Routines
	C51 Declarations
	A51 Assembly Language Declarations

	Code Banking
	Common Area
	Executing Functions in Other Banks
	Code Banking on the Triscend E5
	Configuring the code banking library
	Using the code banking library

	Downloading Banks using FastChip

	Summary

