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ABSTRACT 
 
Time to market pressures, increasing system complexity, 
and smaller process geometries, are creating a market 
vacuum that will be increasingly addressed by an 
important emerging category of devices: the Configurable 
System-on-Chip (CsoC). These application specific 
programmable devices (ASPP) are single chip 
combinations of microprocessors, memory, dedicated 
peripheral functions, and embedded programmable logic. 
They provide unprecedented time-to-market benefits and 
field customization for the electronic systems of this 
upcoming decade. 
 
Integration of microprocessors, memory, peripherals, and 
programmable logic is made possible with a new bus 
architecture called the Configurable System Interconnect 
Bus (CSI) developed at Triscend Corporation. The 
Configurable System Interconnect Bus was specifically 
designed to facilitate re-use, guarantee timing, increase 
system throughput, and reduce system debug time in 
applications that require intense time-to-market and field 
upgrade. 
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Introduction 
Six competing requirements challenge the embedded 
systems designer: time-to-market, performance, cost, 
physical size, power consumption, and product features 
(Figure 1).  The designer's task is to find the best possible 
compromise between these requirements in order to 
deliver the most effective product to the customer. 
 
 

 
 
 

Figure 1. Embedded Systems Challenge 
 
 
For many applications, Triscend's Configurable System 
on Chip (CSoC) products offer designers a more attractive 
balance between these factors than alternative solutions.    
Design re-use, and field upgrade through remote software 
download, when combined with a CSoC device, 
fundamentally change the rules of embedded system 
design by breaking the link between time to market and 
product features. 
 
CSoC Introduction 
Embedded system designers develop products with a 
specific function or application in mind. In almost every 
application there is a central processing unit that is 
responsible for the overall system’s supervision, handling 
of complex state machines, and number crunching 
algorithms. The central processor also manages the 
system’s memory and I/O, which are the peripherals that 
interface to various entry or display devices. In contrast to 
personal computers, the embedded system applications 
are usually differentiated in both hardware and software. 
Unlike the PC chip sets and prevailing standards around 
it, the embedded system world is plagued with 
innumerous design choices and lack of standards. 

Triscend’s CSoC device is an ideal single chip device for 
the embedded system designer who wants both hardware 
and software flexibility on a single extensible platform.  

Imagine if as a system designer you could begin 
your design with a popular industry-standard processor 
that is supported by leading 3rd party compiler, assembler, 
and debugger tool vendors. The processor is a familiar, 
proven architecture with a large availability of freeware 
applications. The processor’s performance is boosted 
through pipelining in a “Turbo” mode operation, and by 
employing advanced CMOS processing technologies.  

What if you also had an integrated DMA 
controller that offloads the processor from large data 
transfers, freeing it for more important tasks? A glue-less 
interface to external byte-wide Flash, EPROM, or SRAM 
improves performance and eliminates external latches that 
are typically required in time-multiplexed address/data 
bus interfaces.  In applications requiring even higher 
performance with lower power dissipation, an on-chip 
SRAM ranging in density from 8K bytes to 64K bytes 
provides data or code storage for the processor, and data 
buffer space for the DMA controller.  

What if the system came with an integrated on-
chip bus specially designed to insure single cycle data 
transfers and programmable address decoding for the 
peripherals embedded in the chip? This bus is specially 
designed to facilitate “soft module” re-use by abstracting 
the processor specific signaling requirements from the 
peripherals, and by supporting a friendly drag and drop 
software tool for developing micro-controller derivatives. 
Programmable I/O (PIO) pins operate independently from 
the bus and are tightly coupled to an on-chip embedded 
programmable logic core. Flexible pin assignment for 
optimum PCB layout and a host of field programmable 
options like output drive strength, slew rate control, pull 
up, pull down, registered I/O, or low power operation are 
some of the user selectable features for each package pin. 

Finally, what if all this was offered with a large 
amount of on-chip programmable logic with sophisticated 
built-in system debugging hardware that includes a JTAG 
interface and a breakpoint unit? And what if the device 
came with a rich debugging environment where the 
device can be altered in the field infinitely and debugged 
using standard logic debugging or processor ICE 
debugging techniques?  Now you can have a device that 
does exactly that. Triscend Corporation’s E5 device 
(Figure 2) is a single chip CSoC that is the ideal 
embedded system platform for creating flexible, fast time-
to-market applications. 

Implementing the E5 as a dedicated logic chip 
with only a small area of re-configurability provides one 
to two orders of magnitude more efficiency in silicon area 
than a similar implementation in a pure programmable 
logic device. Other obvious advantages offered by the 
integration include increased performance and lower 
power. An important architectural feature of the E5 CSoC 



 

is the Configurable System Interconnect (CSI) bus that 
allows each resource on the bus to communicate to other 
resources, thus leveraging and building upon the existing 
resources.  
 

 
Figure 2.  Triscend’s E5 Configurable System on Chip 

Block Diagram 
 
CSI Bus Introduction 
The configurable system interconnect (CSI) bus is 
designed to facilitate design re-use within the 
configurable system logic (CSL).  The bus is distributed 
throughout the CSL in fixed logic.  It is connected and 
operates with all system masters including the processor, 
DMA controller, JTAG interface, and the external 
Memory Interface Unit (MIU).  Memory mapped and 
DMA slaves may be implemented to handle data 
transactions.  User logic may obtain the services of the 
processor and DMA controller as proxy masters through 
an interrupt or DMA request respectively.  The user is 
assured that the bus will reach any logic implemented 
within the CSL. The maximum bus performance 
specification can be met regardless of the placement 
algorithm’s quality of results.   

The primary objective in the design of this bus 
was to make it easy to use.  The bus operates 
synchronously.  The default transaction duration is one 
clock cycle.  Wait states may be added when necessary.  
The appropriate bus signals may be configured to connect 
to the CSL logic as required for the user’s design.  
Additionally, the synchronous decode of addresses and 
commands is handled for the user by selectors. There are 
many selectors distributed throughout the CSL.  Each 
selector provides simple read and write signals to be 
routed to the user logic.  The addresses and commands 

that a selector responds to may be individually 
configured. 
 
CSI Bus Architecture 
The bus operates synchronously and supports multiple 
masters and slaves, DMA, and wait states.  The bus is 
pipelined, has separate write and read data paths, uses 
multiplexed or logical OR networks to combine signal 
sources, and supports a fast default cycle with optional 
wait states when necessary.  A round-robin arbitration 
scheme is implemented for masters.  The slave side 
includes multiple decoded and qualified read and write 
enable signals generated by selectors. A logical bus 
architectural diagram and signal flow is shown in Figure 
3.  There are four primary bus segments: master 
read/write, and slave read/write related to the distribution 
and collection of the bus signals prior to the pipeline 
registers. The multi-source instances of all signals in each 
collection segment are combined via logical OR gates or 
multiplexed networks into a consolidated bus. This 
prevents power consumption concerns in the event of any 
contention that is typical of tri-state bus structures.  
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arb_ Arbitration request and early response  
mw_ Master write collection segment 
mr_ Master read distribution segment 
sw_ Slave write distribution segment 
sr_ Slave read collection segment 
lw_ Non-CSL slave interface distribution 

tlr_ Non-CSL slave interface collection 
tfw_ CSL interface distribution segment 
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Figure 3.  CSI Bus architecture and Bus signal 

description 
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slave logic on a write operation (labeled as fw_ in Figure 
3), or from CSL slave logic to system masters on a read 
operation (labeled as fr_ in that same figure). All bus 
signals flowing to the user logic are referred to as “write” 
signals and all bus signals from the user logic as “read” 
signals. 
 
Bus Distribution in CSL 
CSI Bus signals do not need to travel very far through the 
routable signals of the CSL.  All signals are synchronized 
throughout the CSL just before entering the user 
networks.  A complete set of the shared or common 
physical bus signals is available in each CSL bank.  A 
bank includes 128 logic cells and 8 selectors.  All of the 
synchronized data, address and control signals are 
logically equivalent and may be treated as aliases.  The 
CSL configuration software can usually optimize the 
performance and ability to place and route by selecting 
the closest available alias.  

The logic block architecture and programmable 
routing scheme for CSL was determined prior to the 
addition of the bus.  The bus signals enter general user 
logic within the CSL logic through existing interconnect 
resources. The logic block of each configurable logic cell 
includes a four input LUT and a register bit.  Each pair of 
these is grouped with an associated programmable 
switching matrix and routing channels and then used as a 
fundamental building block or logic tile. 

Logic tiles are grouped into 8x8 banks that are 
arrayed two dimensionally to provide the required amount 
of Configurable System Logic embedded within a CSoC. 
Figure 4 shows the floor plan of a Triscend E520 device 
containing approximately 30,000 gates of programmable 
logic gates. 
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Figure 4.  Physical Floor-plan of a Triscend E520 
 

Every bank boundary has a complete set of bus pipeline 
registers.  CSI bus signal to and from the banks are 
pipelined allowing the number of banks to be scaled while 
maintaining constant bus interface timing characteristics 
at the user logic.   

There is one selector per column of cells in the 
boundary above each bank.  Each selector delivers a 
decoded and piped read and write signal.  It is fully 
programmable as to which address bits are included in its 
decode and the decode value. Bus signals are distributed 
to the banks by a cascade of buffers that is repeated once 
per bank.  They are collected from the banks by a similar 
cascade of OR gates.  A bus signal crosses the chip only 
once in the horizontal and vertical dimensions.  
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Figure 5.  Signal flow in a Logic Tile 

 
Four vertical 32-bit data busses span each bank, 

two write and two read, four bits per tile per bus, least 
significant nibble to the right.  This data bus is also used 
to access the CSL configuration memory.  The data bus 
signals are buffered and piped at bank boundaries. The 
read data path is implemented as a chain of OR gates 
within the bank, with one OR gate per tile.  Since an 8032 
microprocessor has an 8-bit bus, all data bytes are 
combined into one byte at the top edge of the CSL.  The 
write data bits are driven to the existing routing resources 
within the tile. A horizontal 32-bit read data bus also 
spans each bank with four bits per tile. The horizontal 
data path is implemented as a bi-directional multiplexed 
chain with the select control derived from the 
programmable routing channels and the select data from 
the logic tile’s LUT, registers, or carry chain.  Within 
each tile, the horizontal read data may be configured to 
connect to the corresponding vertical read data OR chain.  

The signal flow associated with each logic tile is 
illustrated in Figure 5. Aside from the data busses, the 
general interconnect includes 48 nets within each tile.  



 

There are four sets of eight “short” nets, each set 
extending to one of the four adjacent tiles.  Each set of 
eight “long” nets spans the bank, one vertically and one 
horizontally.  At bank boundaries, vertical long nets may 
be used as bus control signal inputs or outputs, while 
horizontal long nets may be used as bus address lines.  
 
CSI Socket Signals 
The CSI bus has separate address, command protocol, 
write data, and read data signals.  Figure 6 shows the CSI 
Socket bus diagram. The bus signals within the CSL are 
grouped functionally and described in the following 
sections. Within the CSL there are many copies, or entry 
and exit points for the synchronized bus signals, all of 
which are logically equivalent or aliases.  The signals 
marked “Physical” are available to the user.  The signals 
in the sections marked “Virtual” are not directly available 
to the user, only via the operation of a selector. 
 
 
Common Bus Signals (Physical) 
These are the shared or common CSI Bus signals that are 
available at many alias points throughout the CSL. 
 
Name Signal Description 
bclk Bus clock 
dws[7:0] Slave write data bus, into slaves 
adr[31:0] Address bus 
waited Indicates previous cycle was a wait state 
waitnext Assert to cause next cycle to be a wait state 
drs[7:0] Slave read data bus, out of slaves 
 
Selector Signals (Physical) 
Each of “n” selectors on the bus drives a pair of the 
following enable control signals.  The index identifies the 
signals of one of the selectors in the CSL.  The first two 
signals are generated when configured for address and 
command decodes.  Alternatively, a select rather than a 
write select may be generated in the pair.  When the 
selector is used for DMA, the “reqsel” and “acksel” 
signals are available instead.  
 
Name Signal Description 
wrsel[n-1:0] Decoded write enable 
rdsel[n-1:0] Decoded read enable 
sel[n-1:0] Decoded select, on read or write enable 
reqsel[n-1:0] Channel selected DMA request 
acksel[n-1:0] Channel selected DMA acknowledge 
 
Bus Protocol Signals (Virtual) 
The following signals are not directly available to the user 
inside the CSL though they are bussed throughout the 
CSL. These are handled within the dedicated decoders 
and synchronizing logic at the bank boundaries. Signals 

Wren and Rden are not directly available to the user logic, 
only via selectors. 
 
Name Signal Description 
brst_ Bus reset (not directly available to user 

logic, only via initial values) 
Wren Write enable (not directly available to 

the user logic, only via selectors) 
Rden Read enable (not directly available to 

the user logic, only via selectors) 
waitnow Assertion causes the current cycle to be 

a wait state (not available to user logic) 
 
Bus DMA Signals (Virtual) 
There are two direct memory access (DMA) channels.  
The index identifies which channel the signals are 
associated with.  Inside the CSL, these DMA signals are 
connected to the selectors. 
 
Name Signal Description 
dmareq[1:0] DMA requests, channel 0 and 1 
dmaack[1:0] DMA acknowledges, channel 0 and 1 
 
External Memory Coordination Signals (Virtual) 
Additional devices may be connected to the external 
memory interface bus.  These signals allow decoding of 
external devices to be implemented with selectors in the 
CSL.  The complexities of the protocol involved here are 
handled by the selector logic. 
 
Name Signal Description 
xmreq External memory cycle request out 

from selectors in CSL 
xmact External cycle active timing input to 

selectors in CSL 
 
Breakpoint Signals (Physical) 
The breakpoint generator can receive a break signal from 
the CSL or have the final break delivered to the CSL.  
They are grouped with the bus signals because they are 
distributed and synchronous with the bus.  
 
Name Signal Description 
bpreq Breakpoint request from CSL to 

breakpoint generator 
bpevt Breakpoint event from breakpoint 

generator to CSL 
 
CSI Socket Selectors 
Selectors are used to decode the bus address and 
command protocol. The decode is done ahead of the 
registers delivering the signals into each bank.  This 
significantly improves the bus performance that may be 
achieved within the user programmable logic. For the 
ultimate bus performance, no CSL user logic resources 



 

need to be involved in interfacing registers to the bus, 
only routing resources.   
 

The selector also provides additional services in 
handling complexities of the bus interface protocol.  The 
basic read and write protocol is not very complex. 
However, the selector is also used to add wait states and 
DMA transactions, and to generate a chip select and 
coordinate the operation of the external memory bus 
normally dedicated to the external configuration memory.  
The selector will also be used to handle word and sub-
word specific decodes with wider data busses; however, 
presently the entire system only deals with bytes. 

A selector may be configured to deliver a 
synchronized version of the some of the virtual bus 
signals.  For example, to get “Wren”, set all addresses in 
the decode to don’t care.  Each selector is roughly 
comparable to having a relatively simple but fast and 
wide programmable logic device (PLD) such as a 16V8 in 
a corresponding system board implementation. 
 
Selector Parameters 
There are a total of 70 bits for configuration and control 
available for each selector.  They are described in the 
following sections.  The configuration bits are set to a 
static value prior to overall use of the component.  The 
DMA bits may be initialized and used in a static manner 
but with only two channels, they will typically be used in 
a dynamic manner by the application program running on 
the processor. 
 
Address Decode 
All 32 address bits are involved in the decode.  Each bit 
may be included in the decode and required to be either a 
one or zero.  Also, any address bits may be excluded, or 
don’t care, as far as the decode is concerned.  If both “s1” 
and “s0” are ones for an address bit, then that address bit 
is don’t care. If both are zero for any bit then the selector 
is disabled.  Configuration software may convert other 
address range definition forms, such as base and block 
size, to the actual physical form for the designer. 
 
Register Name Description 
s0[31:0] Enable decode when corresponding 

address is 0 
s1[31:0] Enable decode when corresponding 

address is 1 
 
Wait States 
When wait states may need to be generated, the first wait 
state must be generated by the selector.  The first wait 
state cannot be generated by user logic because it must be 
generated synchronously on the same clock that the 
decode is first sent to the user logic. 
 
 

Register Name Description 
Wse Wait state enable (causes generation of 

first wait state) 
 
Chip Select, Read or Write Enable 
There are physically only two signals for the user from 
each selector.  When the selector is used to decode 
addresses, rather than generating a decoded read and a 
decoded write, it may generate a decoded read and a 
decoded operation (covering both read and write). 
 
Register Name Description 
riw Merge read into write enable (“wrsel” 

becomes “sel”) 
 
DMA Enable 
The selector may be used to deliver one of the DMA 
acknowledge signals to a DMA device and also to deliver 
a local DMA request signal to one of the DMA channels.  
The address decode is then used internal to the selector to 
reference the DMA channeling control bits. 
 
Register Name Description 
dsa DMA selector mode (1=channel DMA, 

0=decoder) 
 
DMA Channeling 
These control bits are the least significant two bits of 
either a high or low nibble at the address decoded by this 
selector.  They are in only one nibble as determined by 
the selector placement, since every other selector is 
dedicated to an alternate nibble.  The more significant bit 
selects which channel it is connected or channeled 
through, while the least significant bit enables the 
connection.  For these bits to be accessible, the selector 
must be enabled for DMAb by setting the DMA enable bit 
“dsa”. 
 
Register Name Description 
dmc DMA channel (1 or 0) 
dme DMA enable (1=enable, 0=disable) 
 
External Memory 
A transaction decoded by the selector may use the 
external memory bus normally dedicated to the external 
configuration memory.  The data, address, and general 
read and write signals may be reused, conserving general 
configurable pins for other uses.  In the minimum case, 
only a chip select would be provided directly by the 
selector via a pin.  This configuration bit enables the 
selector to coordinate operation with that of the memory 
interface controller. 
 
Register Name Description 
xme External memory enable 



 

Non-CSI Socket Signals 
There are other signals between the CSL and the 
dedicated system logic that are not part of the bus.  The 
non-bus signal groups interfacing to the CSL are listed in 
the next few sections but not otherwise covered here. 
 
Sideband Signals 
Several signals to the system are neither bussed nor 
distributed throughout the CSL.  These sideband signals 
interface asynchronously into the CSL only at the top 
edge.  The interrupt requests are related to bus operations 
in that they may request that the processor perform some.  
The signals shown here are specific to the 8032 
implementation. 
 
Name Signal Description 
irq[1:0] Interrupt requests to 8032 (INT1_ , 

INT0_) 
hpintreq Interrupt request at fixed highest priority 
timer[3:0] Input to 8032 timer channels (T2EX, T2, 

T1, T0) 
rxd Input to 8032 serial interface (RXD 

input) 
rxdo Output from 8032 serial interface (RXD 

output) 
txd Output from 8032 serial interface (TXD) 
rstc Output of processor reset control from 

CSL 
xclk External clock input for 32KHz 

oscillator 
cpurst CPU was reset input 
 
Pad Buffer Signals  
Internal logic connects to the “n” external input/output 
pads (PIOs) via buffers.  These are connected to an extra 
layer of interface logic and routing tiles around the outer 
edge of the CSL. 
 
Name Signal Description 
Ipio[n-1:0] Input from input buffer 
Opio[n-1:0] Output to output buffer 
Epio[n-1:0] Enable to output buffer 
 
Clock and Global Signals 
There are six general purpose clock or global signals.  
These are available to the registers within the CSL.  These 
are not part of the bus, but are bussed in the sense that 
they are delivered throughout the CSL with relatively low 
skew.  Each may be driven either from an associated PIO 
or from within the CSL via that associated PIO. 
 
Name Signal Description 
clk[6:1] User available clock domains 
 

CSoC Design Methodology 
FastChipTM is a powerful development tool for Triscend 
Corporation’s Configurable System-on-Chip (CSoC) 
devices. It supports design flows that match embedded 
system product needs. Two methods of hardware design 
entry are supported within FastChip. The “Derivative on 
Demand” design flow facilitates design re-use and speeds 
time to market in applications requiring standard 
peripherals with little or no custom design. A second 
more traditional design flow maximizes product 
differentiation and customization by supporting standard 
interfaces to popular 3rd party EDA design entry, 
synthesis, and simulation tools.  

FastChip interacts with 3rd party MCU 
development tools that include compilers, assemblers, 
linkers, instruction set simulators, and debuggers. It 
interfaces to these tools via ASCII header files and 
executable hex files. A simple five step design 
methodology is all it takes to complete a design from 
concept to working silicon.   
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Figure 6.  CSoC Design Flow 

 
Step 1: System Configuration  
The CSoC hardware is customized at this step by 
choosing functions from either 3rd party or Triscend’s soft 
module library. A simple drag and drop graphical user 
environment with parameterized core generators 
facilitates design re-use. If a custom logic function is 
required, then 3rd party design entry tools such as Orcad 
and View Logic Schematic capture tool, or HDL 
synthesis tools such as FPGA express can be used to 
generate EDIF files for import.  
 
Step 2: Generating Header File and Writing Code 
A software utility within FastChip eases the task of “C” or 
assembly micro-controller code development. This 
software automatically produces a header file that assigns 
logical addresses and symbolic names for all user 
registers in the CSoC. By subsequently including the 



 

header file in the main code, the user can easily refer to 
on-chip registers by their symbolic names. Header files 
also encapsulate code segments that initialize the device 
in the specified mode of operation. For more complex 
peripherals, whole device driver code segments are 
included in the header file to reduce application 
development cycles and improve time to market. The 
software application is compiled, assembled, and linked 
using off-the-shelf MCU development tools from Keil 
and Tasking. 
  
Step 3: Debugging code and Generating Hex file 
After writing the software application, 3rd party 
instruction set simulators allow quick code debug before 
generating the final Hex file that is download into the 
CSoC. 
 
Steps 4: Downloading the Program 
When satisfied with the proper functionality of the 
application software, the final CSoC configuration bit-
stream is created using the Bind and Download software 
utility. Bind maps the logic defined for each peripheral in 
the Configurable System Logic (CSL) and interconnects 
the cells with one another, with the CSI Bus Socket, and 
with the PIO pins. Bind is also referred to as Map, Place, 
and Route in typical PLD software tools. The result of the 
Bind process and the object code generated by the 
compiler in the previous step is then merged to create a 
single data file called the initialization program. The 
initialization program configures the processor at power-
up, similar to a processor’s bootstrap program. The next 
step is to “Download” the initialization program into the 
CSoC. 
 Three methods exist to download this program. 
Typically the program is written into external, non-
volatile memory such as FLASH memory. The FLASH 
device can be programmed in a device programmer or 
programmed in-system through the JTAG port. Likewise, 
the initialization program can be downloaded directly into 
the chip’s internal SRAM memory through the JTAG 
port, bypassing external memory altogether. 
Alternatively, the initialization program can be written 
into an external non-volatile serial PROM device. 
 
Steps 5: In-System debugging 
The stage is now set for exhaustive in-system verification. 
At this point, the CSoC device is in its target application 
running at speed and its JTAG port is connected to a PC 
for debug monitoring and runtime control. The FastChip 
software acts as an intermediary to your standard CPU 
debugging tools. The debugging tool’s commands are 
translated by FastChip software to equivalent JTAG 
commands that control the breakpoint unit. This allows 
compete control and monitoring of the hardware to 
manage breakpoint events and examine user register 
contents using 3rd party debugger interfaces. 

Conclusion 
A CSoC device with a powerful on-chip bus was 
described in this paper. This bus provides a standard 
framework for delivering quick time-to-market custom 
micro-controller solutions.  A software development 
environment was also described that provides a graphical, 
user friendly development environment that interfaces to 
standard 3rd party EDA and MCU development tools. 
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