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ABSTRACT

Time to market pressures, increasing system complexity,
and smaller process geometries, are creating a market
vacuum that will be increasingly addressed by an
important emerging category of devices: the Configurable
System-on-Chip (CsoC). These application specific
programmable devices (ASPP) are single chip
combinations of microprocessors, memory, dedicated
peripheral functions, and embedded programmable logic.
They provide unprecedented time-to-market benefits and
field customization for the electronic systems of this
upcoming decade.

Integration of microprocessors, memory, peripherals, and
programmable logic is made possible with a new bus
architecture called the Configurable System Interconnect
Bus (CSI) developed at Triscend Corporation. The
Configurable System Interconnect Bus was specifically
designed to facilitate re-use, guarantee timing, increase
system throughput, and reduce system debug time in
applications that require intense time-to-market and field
upgrade.
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Introduction

Six competing requirements challenge the embedded
systems designer: time-to-market, performance, cost,
physical size, power consumption, and product features
(Figure 1). The designer's task is to find the best possible
compromise between these requirements in order to
deliver the most effective product to the customer.
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Figure 1. Embedded Systems Challenge

For many applications, Triscend's Configurable System
on Chip (CSoC) products offer designers a more attractive
balance between these factors than alternative solutions.
Design re-use, and field upgrade through remote software
download, when combined with a CSoC device,
fundamentally change the rules of embedded system
design by breaking the link between time to market and
product features.

CSoC Introduction

Embedded system designers develop products with a
specific function or application in mind. In almost every
application there is a central processing unit that is
responsible for the overall system’s supervision, handling
of complex state machines, and number crunching
algorithms. The central processor also manages the
system’s memory and 1/O, which are the peripherals that
interface to various entry or display devices. In contrast to
personal computers, the embedded system applications
are usually differentiated in both hardware and software.
Unlike the PC chip sets and prevailing standards around
it, the embedded system world is plagued with
innumerous design choices and lack of standards.

Triscend’s CSoC device is an ideal single chip device for
the embedded system designer who wants both hardware
and software flexibility on a single extensible platform.

Imagine if as a system designer you could begin
your design with a popular industry-standard processor
that is supported by leading 3" party compiler, assembler,
and debugger tool vendors. The processor is a familiar,
proven architecture with a large availability of freeware
applications. The processor’s performance is boosted
through pipelining in a “Turbo” mode operation, and by
employing advanced CMOS processing technologies.

What if you also had an integrated DMA
controller that offloads the processor from large data
transfers, freeing it for more important tasks? A glue-less
interface to external byte-wide Flash, EPROM, or SRAM
improves performance and eliminates external latches that
are typically required in time-multiplexed address/data
bus interfaces. In applications requiring even higher
performance with lower power dissipation, an on-chip
SRAM ranging in density from 8K bytes to 64K bytes
provides data or code storage for the processor, and data
buffer space for the DMA controller.

What if the system came with an integrated on-
chip bus specially designed to insure single cycle data
transfers and programmable address decoding for the
peripherals embedded in the chip? This bus is specially
designed to facilitate “soft module” re-use by abstracting
the processor specific signaling requirements from the
peripherals, and by supporting a friendly drag and drop
software tool for developing micro-controller derivatives.
Programmable 1/O (PIO) pins operate independently from
the bus and are tightly coupled to an on-chip embedded
programmable logic core. Flexible pin assignment for
optimum PCB layout and a host of field programmable
options like output drive strength, slew rate control, pull
up, pull down, registered 1/O, or low power operation are
some of the user selectable features for each package pin.

Finally, what if all this was offered with a large
amount of on-chip programmable logic with sophisticated
built-in system debugging hardware that includes a JTAG
interface and a breakpoint unit? And what if the device
came with a rich debugging environment where the
device can be altered in the field infinitely and debugged
using standard logic debugging or processor ICE
debugging techniques? Now you can have a device that
does exactly that. Triscend Corporation’s E5 device
(Figure 2) is a single chip CSoC that is the ideal
embedded system platform for creating flexible, fast time-
to-market applications.

Implementing the E5 as a dedicated logic chip
with only a small area of re-configurability provides one
to two orders of magnitude more efficiency in silicon area
than a similar implementation in a pure programmable
logic device. Other obvious advantages offered by the
integration include increased performance and lower
power. An important architectural feature of the E5 CSoC



is the Configurable System Interconnect (CSI) bus that
allows each resource on the bus to communicate to other
resources, thus leveraging and building upon the existing
resources.
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Figure 2. Triscend’s E5 Configurable System on Chip
Block Diagram

CSI Bus Introduction

The configurable system interconnect (CSI) bus is
designed to facilitate design re-use within the
configurable system logic (CSL). The bus is distributed
throughout the CSL in fixed logic. It is connected and
operates with all system masters including the processor,
DMA controller, JTAG interface, and the external
Memory Interface Unit (MIU). Memory mapped and
DMA slaves may be implemented to handle data
transactions. User logic may obtain the services of the
processor and DMA controller as proxy masters through
an interrupt or DMA request respectively. The user is
assured that the bus will reach any logic implemented
within the CSL. The maximum bus performance
specification can be met regardless of the placement
algorithm’s quality of results.

The primary objective in the design of this bus
was to make it easy to use. The bus operates
synchronously. The default transaction duration is one
clock cycle. Wait states may be added when necessary.
The appropriate bus signals may be configured to connect
to the CSL logic as required for the user’s design.
Additionally, the synchronous decode of addresses and
commands is handled for the user by selectors. There are
many selectors distributed throughout the CSL. Each
selector provides simple read and write signals to be
routed to the user logic. The addresses and commands

that a selector responds to may be individually
configured.

CSI Bus Architecture

The bus operates synchronously and supports multiple
masters and slaves, DMA, and wait states. The bus is
pipelined, has separate write and read data paths, uses
multiplexed or logical OR networks to combine signal
sources, and supports a fast default cycle with optional
wait states when necessary. A round-robin arbitration
scheme is implemented for masters. The slave side
includes multiple decoded and qualified read and write
enable signals generated by selectors. A logical bus
architectural diagram and signal flow is shown in Figure
3. There are four primary bus segments: master
read/write, and slave read/write related to the distribution
and collection of the bus signals prior to the pipeline
registers. The multi-source instances of all signals in each
collection segment are combined via logical OR gates or
multiplexed networks into a consolidated bus. This
prevents power consumption concerns in the event of any
contention that is typical of tri-state bus structures.
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Figure 3. CSI Bus architecture and Bus signal
description

The data bus signals within the CSL travel in one
of two directions, either from the system masters to the



slave logic on a write operation (labeled as fw_ in Figure
3), or from CSL slave logic to system masters on a read
operation (labeled as fr_ in that same figure). All bus
signals flowing to the user logic are referred to as “write”
signals and all bus signals from the user logic as “read”
signals.

Bus Distribution in CSL

CSI Bus signals do not need to travel very far through the
routable signals of the CSL. All signals are synchronized
throughout the CSL just before entering the user
networks. A complete set of the shared or common
physical bus signals is available in each CSL bank. A
bank includes 128 logic cells and 8 selectors. All of the
synchronized data, address and control signals are
logically equivalent and may be treated as aliases. The
CSL configuration software can usually optimize the
performance and ability to place and route by selecting
the closest available alias.

The logic block architecture and programmable
routing scheme for CSL was determined prior to the
addition of the bus. The bus signals enter general user
logic within the CSL logic through existing interconnect
resources. The logic block of each configurable logic cell
includes a four input LUT and a register bit. Each pair of
these is grouped with an associated programmable
switching matrix and routing channels and then used as a
fundamental building block or logic tile.

Logic tiles are grouped into 8x8 banks that are
arrayed two dimensionally to provide the required amount
of Configurable System Logic embedded within a CSoC.
Figure 4 shows the floor plan of a Triscend E520 device
containing approximately 30,000 gates of programmable
logic gates.
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Figure 4. Physical Floor-plan of a Triscend E520

Every bank boundary has a complete set of bus pipeline
registers. CSI bus signal to and from the banks are
pipelined allowing the number of banks to be scaled while
maintaining constant bus interface timing characteristics
at the user logic.

There is one selector per column of cells in the
boundary above each bank. Each selector delivers a
decoded and piped read and write signal. It is fully
programmable as to which address bits are included in its
decode and the decode value. Bus signals are distributed
to the banks by a cascade of buffers that is repeated once
per bank. They are collected from the banks by a similar
cascade of OR gates. A bus signal crosses the chip only
once in the horizontal and vertical dimensions.
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Figure 5. Signal flow in a Logic Tile

Four vertical 32-bit data busses span each bank,
two write and two read, four bits per tile per bus, least
significant nibble to the right. This data bus is also used
to access the CSL configuration memory. The data bus
signals are buffered and piped at bank boundaries. The
read data path is implemented as a chain of OR gates
within the bank, with one OR gate per tile. Since an 8032
microprocessor has an 8-bit bus, all data bytes are
combined into one byte at the top edge of the CSL. The
write data bits are driven to the existing routing resources
within the tile. A horizontal 32-bit read data bus also
spans each bank with four bits per tile. The horizontal
data path is implemented as a bi-directional multiplexed
chain with the select control derived from the
programmable routing channels and the select data from
the logic tile’s LUT, registers, or carry chain. Within
each tile, the horizontal read data may be configured to
connect to the corresponding vertical read data OR chain.

The signal flow associated with each logic tile is
illustrated in Figure 5. Aside from the data busses, the
general interconnect includes 48 nets within each tile.



There are four sets of eight “short” nets, each set
extending to one of the four adjacent tiles. Each set of
eight “long” nets spans the bank, one vertically and one
horizontally. At bank boundaries, vertical long nets may
be used as bus control signal inputs or outputs, while
horizontal long nets may be used as bus address lines.

CSI Socket Signals

The CSI bus has separate address, command protocol,
write data, and read data signals. Figure 6 shows the CSI
Socket bus diagram. The bus signals within the CSL are
grouped functionally and described in the following
sections. Within the CSL there are many copies, or entry
and exit points for the synchronized bus signals, all of
which are logically equivalent or aliases. The signals
marked “Physical” are available to the user. The signals
in the sections marked “Virtual” are not directly available
to the user, only via the operation of a selector.

Common Bus Signals (Physical)
These are the shared or common CSI Bus signals that are
available at many alias points throughout the CSL.

Wren and Rden are not directly available to the user logic,
only via selectors.

Name Signal Description

brst_ Bus reset (not directly available to user
logic, only via initial values)

Wren Write enable (not directly available to
the user logic, only via selectors)

Rden Read enable (not directly available to
the user logic, only via selectors)

waithow Assertion causes the current cycle to be
a wait state (not available to user logic)

Bus DMA Signals (Virtual)
There are two direct memory access (DMA) channels.
The index identifies which channel the signals are
associated with. Inside the CSL, these DMA signals are
connected to the selectors.

Name Signal Description

dmareq[1:0] DMA requests, channel 0 and 1

dmaack][1:0] DMA acknowledges, channel 0 and 1

Name Signal Description

bclk Bus clock

dws[7:0] | Slave write data bus, into slaves

adr[31:0] | Address bus

waited Indicates previous cycle was a wait state

waitnext | Assert to cause next cycle to be a wait state

External Memory Coordination Signals (Virtual)
Additional devices may be connected to the external
memory interface bus. These signals allow decoding of
external devices to be implemented with selectors in the
CSL. The complexities of the protocol involved here are
handled by the selector logic.

drs[7:0] Slave read data bus, out of slaves

Selector Signals (Physical)

Each of “n” selectors on the bus drives a pair of the
following enable control signals. The index identifies the
signals of one of the selectors in the CSL. The first two
signals are generated when configured for address and
command decodes. Alternatively, a select rather than a
write select may be generated in the pair. When the
selector is used for DMA, the “regsel” and “acksel”
signals are available instead.

Name Signal Description

xmreq External memory cycle request out
from selectors in CSL

Xmact External cycle active timing input to
selectors in CSL

Breakpoint Signals (Physical)

The breakpoint generator can receive a break signal from
the CSL or have the final break delivered to the CSL.
They are grouped with the bus signals because they are
distributed and synchronous with the bus.

Name Signal Description

wrsel[n-1:0] Decoded write enable

rdsel[n-1:0] Decoded read enable

sel[n-1:0] Decoded select, on read or write enable

regsel[n-1:0] | Channel selected DMA request

Name Signal Description

bpreq Breakpoint request from CSL to
breakpoint generator

bpevt Breakpoint event from breakpoint
generator to CSL

acksel[n-1:0] | Channel selected DMA acknowledge

Bus Protocol Signals (Virtual)

The following signals are not directly available to the user
inside the CSL though they are bussed throughout the
CSL. These are handled within the dedicated decoders
and synchronizing logic at the bank boundaries. Signals

CSI Socket Selectors

Selectors are used to decode the bus address and
command protocol. The decode is done ahead of the
registers delivering the signals into each bank. This
significantly improves the bus performance that may be
achieved within the user programmable logic. For the
ultimate bus performance, no CSL user logic resources




need to be involved in interfacing registers to the bus,
only routing resources.

The selector also provides additional services in
handling complexities of the bus interface protocol. The
basic read and write protocol is not very complex.
However, the selector is also used to add wait states and
DMA transactions, and to generate a chip select and
coordinate the operation of the external memory bus
normally dedicated to the external configuration memory.
The selector will also be used to handle word and sub-
word specific decodes with wider data busses; however,
presently the entire system only deals with bytes.

A selector may be configured to deliver a
synchronized version of the some of the virtual bus
signals. For example, to get “Wren”, set all addresses in
the decode to don’t care. Each selector is roughly
comparable to having a relatively simple but fast and
wide programmable logic device (PLD) such as a 16V8 in
a corresponding system board implementation.

Selector Parameters

There are a total of 70 bits for configuration and control
available for each selector. They are described in the
following sections. The configuration bits are set to a
static value prior to overall use of the component. The
DMA bits may be initialized and used in a static manner
but with only two channels, they will typically be used in
a dynamic manner by the application program running on
the processor.

Address Decode

All 32 address bits are involved in the decode. Each bit
may be included in the decode and required to be either a
one or zero. Also, any address bits may be excluded, or
don’t care, as far as the decode is concerned. If both “s1”
and “s0” are ones for an address bit, then that address bit
is don’t care. If both are zero for any bit then the selector
is disabled. Configuration software may convert other
address range definition forms, such as base and block
size, to the actual physical form for the designer.

Register Name | Description

Wse Wait state enable (causes generation of
first wait state)

Chip Select, Read or Write Enable

There are physically only two signals for the user from
each selector. When the selector is used to decode
addresses, rather than generating a decoded read and a
decoded write, it may generate a decoded read and a
decoded operation (covering both read and write).

Register Name | Description

riw Merge read into write enable (“wrsel”
becomes “sel”)

DMA Enable

The selector may be used to deliver one of the DMA
acknowledge signals to a DMA device and also to deliver
a local DMA request signal to one of the DMA channels.
The address decode is then used internal to the selector to
reference the DMA channeling control bits.

Register Name | Description

dsa DMA selector mode (1=channel DMA,
O=decoder)

DMA Channeling

These control bits are the least significant two bits of
either a high or low nibble at the address decoded by this
selector. They are in only one nibble as determined by
the selector placement, since every other selector is
dedicated to an alternate nibble. The more significant bit
selects which channel it is connected or channeled
through, while the least significant bit enables the
connection. For these bits to be accessible, the selector
must be enabled for DMAD by setting the DMA enable bit
“dsa”.

Register Name | Description

dmc DMA channel (1 or 0)

dme DMA enable (1=enable, O=disable)

Register Name | Description

s0[31:0] Enable decode when corresponding
address is 0

s1[31:0] Enable decode when corresponding
address is 1

Wait States

When wait states may need to be generated, the first wait
state must be generated by the selector. The first wait
state cannot be generated by user logic because it must be
generated synchronously on the same clock that the
decode is first sent to the user logic.

External Memory

A transaction decoded by the selector may use the
external memory bus normally dedicated to the external
configuration memory. The data, address, and general
read and write signals may be reused, conserving general
configurable pins for other uses. In the minimum case,
only a chip select would be provided directly by the
selector via a pin. This configuration bit enables the
selector to coordinate operation with that of the memory
interface controller.

Register Name | Description

Xme External memory enable




Non-CSI Socket Signals

There are other signals between the CSL and the
dedicated system logic that are not part of the bus. The
non-bus signal groups interfacing to the CSL are listed in
the next few sections but not otherwise covered here.

Sideband Signals

Several signals to the system are neither bussed nor
distributed throughout the CSL. These sideband signals
interface asynchronously into the CSL only at the top
edge. The interrupt requests are related to bus operations
in that they may request that the processor perform some.
The signals shown here are specific to the 8032
implementation.

Name Signal Description

irg[1:0] Interrupt requests to 8032 (INTL1_
INTO_)

hpintreq Interrupt request at fixed highest priority

timer[3:0] Input to 8032 timer channels (T2EX, T2,
T1,T0)

rxd Input to 8032 serial interface (RXD
input)

rxdo Output from 8032 serial interface (RXD
output)

txd Output from 8032 serial interface (TXD)

rstc Output of processor reset control from
CSL

xclk External clock input for 32KHz
oscillator

cpurst CPU was reset input

Pad Buffer Signals

Internal logic connects to the “n” external input/output
pads (P10s) via buffers. These are connected to an extra
layer of interface logic and routing tiles around the outer
edge of the CSL.

Name Signal Description

Ipio[n-1:0] Input from input buffer
Opio[n-1:0] Output to output buffer
Epio[n-1:0] Enable to output buffer

Clock and Global Signals

There are six general purpose clock or global signals.
These are available to the registers within the CSL. These
are not part of the bus, but are bussed in the sense that
they are delivered throughout the CSL with relatively low
skew. Each may be driven either from an associated PIO
or from within the CSL via that associated PIO.

Name Signal Description

clk[6:1] User available clock domains

CSoC Design Methodology

FastChip™ is a powerful development tool for Triscend
Corporation’s  Configurable System-on-Chip (CSoC)
devices. It supports design flows that match embedded
system product needs. Two methods of hardware design
entry are supported within FastChip. The “Derivative on
Demand” design flow facilitates design re-use and speeds
time to market in applications requiring standard
peripherals with little or no custom design. A second
more traditional design flow maximizes product
differentiation and customization by supporting standard
interfaces to popular 3™ party EDA design entry,
synthesis, and simulation tools.

FastChip interacts with 3 party MCU
development tools that include compilers, assemblers,
linkers, instruction set simulators, and debuggers. It
interfaces to these tools via ASCII header files and
executable hex files. A simple five step design
methodology is all it takes to complete a design from
concept to working silicon.

CSoC Design Flow
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Figure 6. CSoC Design Flow

Step 1: System Configuration

The CSoC hardware is customized at this step by
choosing functions from either 3" party or Triscend’s soft
module library. A simple drag and drop graphical user
environment  with  parameterized core generators
facilitates design re-use. If a custom logic function is
required, then 3" party design entry tools such as Orcad
and View Logic Schematic capture tool, or HDL
synthesis tools such as FPGA express can be used to
generate EDIF files for import.

Step 2: Generating Header File and Writing Code

A software utility within FastChip eases the task of “C” or
assembly micro-controller code development. This
software automatically produces a header file that assigns
logical addresses and symbolic names for all user
registers in the CSoC. By subsequently including the



header file in the main code, the user can easily refer to
on-chip registers by their symbolic names. Header files
also encapsulate code segments that initialize the device
in the specified mode of operation. For more complex
peripherals, whole device driver code segments are
included in the header file to reduce application
development cycles and improve time to market. The
software application is compiled, assembled, and linked
using off-the-shelf MCU development tools from Keil
and Tasking.

Step 3: Debugging code and Generating Hex file

After writing the software application, 3™ party
instruction set simulators allow quick code debug before
generating the final Hex file that is download into the
CSoC.

Steps 4: Downloading the Program

When satisfied with the proper functionality of the
application software, the final CSoC configuration bit-
stream is created using the Bind and Download software
utility. Bind maps the logic defined for each peripheral in
the Configurable System Logic (CSL) and interconnects
the cells with one another, with the CSI Bus Socket, and
with the P10 pins. Bind is also referred to as Map, Place,
and Route in typical PLD software tools. The result of the
Bind process and the object code generated by the
compiler in the previous step is then merged to create a
single data file called the initialization program. The
initialization program configures the processor at power-
up, similar to a processor’s bootstrap program. The next
step is to “Download” the initialization program into the
CSoC.

Three methods exist to download this program.
Typically the program is written into external, non-
volatile memory such as FLASH memory. The FLASH
device can be programmed in a device programmer or
programmed in-system through the JTAG port. Likewise,
the initialization program can be downloaded directly into
the chip’s internal SRAM memory through the JTAG
port,  bypassing external memory  altogether.
Alternatively, the initialization program can be written
into an external non-volatile serial PROM device.

Steps 5: In-System debugging

The stage is now set for exhaustive in-system verification.
At this point, the CSoC device is in its target application
running at speed and its JTAG port is connected to a PC
for debug monitoring and runtime control. The FastChip
software acts as an intermediary to your standard CPU
debugging tools. The debugging tool’s commands are
translated by FastChip software to equivalent JTAG
commands that control the breakpoint unit. This allows
compete control and monitoring of the hardware to
manage breakpoint events and examine user register
contents using 3rd party debugger interfaces.

Conclusion

A CSoC device with a powerful on-chip bus was
described in this paper. This bus provides a standard
framework for delivering quick time-to-market custom
micro-controller solutions. A software development
environment was also described that provides a graphical,
user friendly development environment that interfaces to
standard 3" party EDA and MCU development tools.
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