Class 330

Configurable Embedded Systems:

Using Programmable Logic to Compress
Embedded System Design Cycles

Steven K. Knapp Arye Ziklik

Vice-President, Applications Director, Product Development
sknapp@triscendcorp.com arye@triscendcorp.com

Triscend Corporation (Booth 5010)
Mountain View, CA 94043
Web: www. triscendcorp.com

INTRODUCTION

Programmable logic provides configurability to embedded systems designs. Such
systems exploit programmable logic's flexibility and increasing cost effectiveness, as well
as the growing availability of intellectual property (IP) cores, to deliver embedded
products to market faster. Programmable logic also offers advantages in higher
integration, increasing performance, and improving system debugging. Deciding to
create configurable embedded systems using programmable logic should be done
strategically, with an understanding of the latest technologies, design trade-offs, and
industry trends.

Only One Thing Remains Constant: Change

So why build a configurable system? Adaptability is essential to survival in
constantly changing environments. A product must react to new markets, specification
changes, customer requirements, and competitive threats. For most embedded systems,
adaptability means using programmable technologies, such as FLASH memory and
programmable logic.

Programmable logic itself offers new capabilities. With their flexible
architectures, programmable logic devices like CBLBomplex Programmable Logic
Devices) andFPGAs (Field-Programmable Gate Arrays), and the emerging class of
configurable processors allow a designer to explore new design solutions. The

combination of a microcontroller and programmable logic proves to be a powerful mix.
A microcontroller efficiently performs complex, general-purpose processing using a
minimum amount of logic, though not always with quick response. Programmable logic,
however, is extremely good at fast response though not good at efficient, general-purpose
processing. The combination allows a designer to offload time-critical or fixed,
computationally intensive functions from the processor and into the programmable logic.

The architectural flexibility of programmable logic also allows the designer to
circumvent shortcomings of a particular processor. Need additional I/O, timers, or
interrupts in your microcontroller? Supplement the MCU using programmable logic.

The configurable nature of MCUs, FLASH, and programmable logic are an
advantage throughout the entire product cycle. During development, configurablility aids
debugging. Buried signals can be brought out to /O pins. Design changes can be made
in a matter of minutes. During manufacturing, production boards can be tested and
configured as part of the production flow, reducing manufacturing steps and inventory. If
designed accordingly, configurable embedded systems can be modified, even after being
deployed in the field. New features or updates can be shipped to a customer, much like
software.

Key Design Considerations

Embedded system designers confront demands from four driving forces, shown in
Figure 1.

Reducing time to market.Time-to-market is loosely defined as the time required

to develop, test, manufacture, and deploy an application to the end user. Hardware
flexibility contributes to time to market. How easy is it to use and modify the hardware?
Does it accommodate change? For example, does it adapt to ever-changing 1/O
requirements? Software adds to the time to market figure in a different way. Are there
assemblers and compilers for the hardware? Are there software engineers that have
experience using the processor? For some technologies, are there cores available that
implement desired peripheral functions? Lastly, is there an effective debugging

capability to find and eliminate errors?
Reducing Product
Time to Market Differentiation

Embedded System
Design Demands

Maximizing Reducing Costs
Performance

Figure 1. Four key forces drive embedded system demands.

Maximizing system performance. The overall performance of an embedded
system depends on a few items. Some applications are constrained by the processor's
architecture. Programmable logic offers some advantages by potentially offloading time-
critical functions from the processor. The actual performance depends on how well the
function integrates with the MCU and the intercommunication between the MCU and
programmable logic. Other designs are limited by the processor's fabrication technology.
Oftentimes, older processors are stuck on obsolete manufacturing processes and only
support slower clock frequencies.

Differentiation from competitors. Like the old adage, "If it were easy, everybody
would be doing it," standard, fixed-architecture devices offer little product differentiation
from your competitors, except through software. Programmable logic provides
significant differentiation while still providing off-the-shelf availability.

Reducing overall product costs.Many factors contribute to a product's cost.
Those within the control of engineering include design and development costs and
component cost. Technologies that reduce time to market usually also help reduce
development cost. For example, a processor well supported by software is typically
faster and easier to use in an application. This correspondingly reduces design time and
its associated cost. Some technologies promising fast time to market may have higher
component costs. For example, a programmable logic device is more expensive than a
gate array. However, the cost to develop a gate array can quickly overwhelm component
costs for all but the highest-volume applications.

CONFIGURABLE EMBEDDED SYSTEM DESIGN

System Design Trends

Like everything else in the digital world, embedded systems benefit from the
constantly shrinking transistor. Improved process technologies create faster and denser
devices at nearly a constant cost, as shown in Figure 2. In the early 1980's, discrete
solutions dominated embedded systems design. A staft@d(microcontroller unit)
was the centerpiece and TTL devicesPtuDs (Programmable Logic Device) provided
the glue logic between the MCU and its discrete peripherals. Even the first personal
computers consisted of primarily discrete components.

In the late 1980's to the mid-1990's, MCU companies began integrating
combinations of peripheral functions into a microcontroller creating a derivdgiiee,
often driven by high-volume customers or applications niches. Some derivatives even
integrated additional system RAM and the boot PROM. Most of the system glue logic
disappeared into programmable logic devices, ei@LDs (Complex Programmable
Logic Device) orFPGAs (Field-Programmable Gate Array). Some discrete peripheral
devices still exist. However, designers are beginning to implement some peripherals in
programmable logic as CPLD and FPGA densities increase. Designers in high-volume or
high-performance applications integrated most of the system components in a single
ASIC (Application-Specific Integrated Circuit) or gate array.

>

i} "System iConfigurable
;onachio” s processors

St
b MCU b asic b . o0
i1 Derivative !} ' Configurable o]
; " : Processor w

MCU Derivatives and
Programmable Logic

()
Q
<
I
£
S
(45}
Q
i)
c
©
)
(%)
)
) . RAM
Q Discrete Solutions MCU
N Derivative
=
IS _ EPROM/
c
2 MCU Ell A FLASH i o3
S i+ "Roll-Your- i ¢
S iiown"MCUin i+ & i
5 CPLD/ Own oW
L 2 || errom FPGA .. £ FPGA it
> | Periph / : i
£ eral
2] NI
I
g periph- || Periph
S = eriph- eriph-
£ — eral eral
1980 1990 2000
Year

Figure 2. As embedded system design evolves, it tends to integrate functions into
new programmable technologies of ever-increasing density and
performance.

Others trends in the programmable logic and intellectual property (IP) arenas
further shaped embedded systems development. FPGA and CPLD capabilities and
performance increased, allowing them to all but implement entire systems on a single
piece of silicon. The IP providers had been developing cores, such as UARTS,
timer/counters, etc. for the ASIC or gate array markets. With improved programmable
logic densities, IP providers began "porting" their core offerings over to FPGAs.

In the late 1990's, higher-volume designers began to integrate entire processor
systems—including the MCU—into a single, large ASIC. This technique is sometimes
referred to with the marketing buzzworsglystem-on-a-chip These designers could
afford the additional time, development cost, and risk associated with semi-custom
design. The disadvantage of ASICs, for most designers, is that they are inflexible.
Metal-masked devices are cost-effective for high-volume applications.

Several companies have recently announced, or announced development plans
for, a new class of device called canfigurable processor Similar to its ASIC
counterpart, a configurable processor integrates a microprocessor or MCU with its
associated peripherals. Unlike the ASIC, a configurable processor is changeable, often
with its configuration program stored off-chip in a standard byte-wide EPROM or
FLASH device.

Comparing Today's Design Alternatives

A designer starting a new embedded systems design confronts various
implementation options. Choosing the best method depends on the underlying
application. No solution is universal for all design demands. The chart in Table 1 lists
the advantages and disadvantages of each approach and the solution’s fit in terms of time
to market (TTM), improved performance (PERF), reduced cost (COST), and increased
differentiation (DIFF).

Stand-alone, standard microcontroller. A single, stand-alone MCU is often
sufficient for simple designs. It offers fast time to market and significant cost advantages
if the MCU is a popular, high-volume device. However, product differentiation is
accomplished via software only. Often, older MCUs are built on aging process
technologies, limiting overall performance.

Microcontroller _derivative. Microcontroller derivatives offer improved
integration, usually with extra peripherals and possibly on-chip memory (EPROM,
FLASH, RAM). Derivatives have some of the same advantages and disadvantages of a
stand-alone MCU. However, derivatives typically have weaker software support.
Furthermore, smaller-volume derivatives suffer notoriously bad availability problems
resulting in long lead-times.

Microcontroller_with ASIC support logic. Some higher-volume applications
integrate the microcontroller's support logic in a supporting ASIC or gate array. This
solution offers extremely high product differentiation with excellent potential
performance and low costs in high-volume manufacturing. However, ASICs require
extensive design simulation and test vector creation before manufacturing. There are also
non-recurring engineering (NRE) charges for mask making and production plus
minimum volume requirements by the manufacturer. In addition, there is little software
support for custom functions implemented in the ASIC. Debugging an ASIC-based
design is challenging unless extra debug logic is included in the design. Also, many of
the peripheral functions must be designed from scratch or purchased as an IP core, adding
to the design cost.

Microcontroller with CPLD/FPGA support logic. This option provides some of
the same benefits as the ASIC solution. Time to market concerns are dramatically
reduced because CPLDs and FPGAs are standard, programmable, off-the shelf devices.
Currently, there are few IP cores available for CPLDs and FPGAs so custom design may
add to development time and expense. Component costs are usually good for all but
higher-volume applications.

Table 1. Comparing Today's Embedded System Design Alternatives.

Solution/Fit

Pros

Ccons

Standard,
stand-alone MCU

Good for simple designs

COST PERF

=
4
=

DIFF

Good performance

High differentiation
Architectural flexibility

Good cost in moderate volumes

b

™ ATTM Fast time to market Limited number of I/0
peost Off-the-shelf availability Little product differentiation
cosT perp Y DIFF Strong sof_tware support Performance limited on older
System-wide debugging MCUs
Low cost for popular MCUs
DIFF
MCU Den\f;lves A TTH Limited number of I/0
:gg:g Fast time to market Little product differentiation
) Weaker software support
2 DIFF Integrated peripherals, memory .
cosT PERF o Long lead-times, poor
Off-the-shelf availability availability for some
DIFF derivatives
MCU + ASTITCM . Increased 1/O Complex design/verification
A COST) Manufacturing lead-times
wlites 4 PERF Superior performance No modifications possible
A\ DIFF Excellent differentiation . P
cost PERF : I Little software support
« Architectural flexibility High cost in low volumes
Low cost in high volumes Poor debugging support
DIFF
EZAISIPD;FP GA Good time to market
iy I Increased 1/O Moderately complex design
> cosT Off-the-shelf availability Limited software support
AORE Good performance Performance limited by
cosTt PERF High differentiation intercommunication delay
Architectural flexibility Fair debugging support
OIFF Good cost in moderate volume
I\R/I(z:”l-JYOUIL-PO(\;A,I: Complex design/verification
n g i Increased 1/O No software support
>cosT Excellent differentiation Performance limited by FPGA
:EFFRFF Higher performance for some architecture
cosT PERF applications Poor cost benefit for standard
Architectural flexibility processors
DIFF Poor debugging support
Fast time to market
Configurable Increased 1/0O
Processors Integrated peripherals, memory
ATTM Off-the-shelf availability
2ot Strong software support Processor centric solution
A DIFF System-wide debugging Moderately complex design

TTM=improved time to market, PERF=higher performance, COST=lower cost, DIFF=increased differentiation,

A=excellent¥=poor

System performance sometimes suffers due to poor data communication between
the MCU and the logic implemented within the CPLD/FPGA. Functions within the
CPLD/FPGA do not always integrate well with the MCU. Some require additional
decoding, bussing, and control logic. Nearly all CPLDs and FPGAs lack a dedicated
internal bus for efficient signal distribution. In addition, decoding address signals taxes
the narrow fan-in blocks found in most FPGAs. Some hybrid devices, like WSI's PSD
devices, contain CPLD or FPGA logic with an integrated, dedicated MCU interface. The
ability to integrate a new function into MCU’s software flow also becomes an issue.
How will the MCU read and write to functions implemented in programmable logic?

Roll-Your-Own MCU_ with FPGA. With the ever-improving performance,
density, and cost of FPGAs, adventurous designers have opted to create their own MCU
and support logic in a single FPGA. While offering the ultimate in differentiation plus
performance benefits for some applications, a custom MCU in FPGA presents some
significant challenges. The designer must create the design and bus structure from
scratch or purchase an MCU core from an IP provider. Even pre-canned solutions have
weak assembler or compiler support. Some designers choose to implement standard
processors, such as a subset of an 8051, but at extreme cost compared to an off-the-shelf
solution. On the same process technology, a processor implemented in FPGA consumes
an estimated ten to fifteen times more silicon than a dedicated implementation. This
approach requires substantial verification for complex processors.

Configurable processors. Configurable processors are an emerging and
important new solution for embedded system designers. Configurable processors are
standard, off-the-shelf devices that provide a silicon-efficient dedicated embedded
processor, usually well supported by software tools. An internal, high-performance bus
offers high-bandwidth communication between the processor and dedicated or
programmable peripherals available on chip. The integrated programmable logic allows
a designer to specify and efficiently use a variety of application-specific peripherals. The
pre-designed bus reduces development time and dramatically simplifies verification. On-
chip breakpoint hardware provides extensive debugging support.

CONFIGURABLE EMBEDDED SYSTEMS TECHNOLOGIES
There major configurable embedded systems technologies available today include
* Complex Programmable Logic Devices (CPLDSs),
* Field Programmable Gate Arrays (FPGAS),

 Hybrid Devices (CPLDs or FPGAs with an integrated microcontroller
interface),

» Configurable Processors

Macrocells

>
i
£
|«
Logic X
Block N
)
g EEEE’STI_
=
°
I=
2
%)
Logic Logic
Block Block

Figure 3. A typical CPLD device contains numerous macrocells, combined into
larger logic or function blocks, interconnected with a programmable
switch matrix.

CPLD - Complex Programmable Logic Device

A CPLD is much like integrating multiple PALs or PLDs all on a single chip, as
shown in Figure 3. A typical CPLD is the equivalent of four to 32 simple PALs,
typically containing from 18 to 256 macrocells, which typically equates to a board-full of
7400-series TTL devices. Each CPLD macrocell contains a flip-flop and a wide
combinatorial logic function that efficiently implements sum-or-products functions.
Usually, each macrocell has an associated device pin.

A group of eight to 16 macrocells is grouped together into a larger logic block.
The macrocells within a logic block are usually fully connected. The logic blocks are
further interconnected to one another through some form of switch matrix. Not all CPLD
switch matrices are fully connected, depending on the vendor and product family.

CPLDs are generally best for control-oriented designs, due in part to their fast
pin-to-pin performance. The wide fan-in of their macrocells makes them well suited to
complex decoding and high performance state machines.

Generally, modern CPLDs are CMOS and use non-volatile memory cells such as
EPROM, EEPROM, or FLASH to define their functionality. Many of the most-recently-
introduced CPLD devices use re-programmable EEPROM or FLASH technologies, and
are designed to be programmed in-circuit (also called ISP for in-system programmable).

EEPROM and FLASH processes are erasable technologies. However, not all
EEPROM- and FLASH-based can programmed while soldered to the circuit board. In-
system programmability (ISP) requires special on-chip circuitry to boost internal
programming voltages. Devices lacking the on-chip programming circuitry require a
device programmer to be programmed and erased. Those with the programming circuitry

can be programmed in the system, either via a proprietary interface or a standard JTAG
(IEEE 1149.1) interface.

Table 2. Vendors of in-system programmable (ISP) CPLDs.
Altera
Atmel
Cypress
Lattice
Philips
Vantis
Xilinx

In-system programmable CPLDs are recommended for configurable embedded
systems because they can be modified, even when soldered to a printed circuit board.
Vendors supplying such CPLDs are listed in Table 2.

FPGA - Field Programmable Gate Array

FPGAs are a distinct from CPLDs and typically offer the highest logic capacity,
plus the greatest number of flip-flops and 1/0. An FPGA consists of an array of logic
blocks, surrounded by programmable 1/O blocks, and linked with programmable
interconnect, as shown in Figure 4. A typical FPGA contains from tens to thousands of
logic blocks and an even greater number of flip-flops. Sophisticated software places the

‘ Input/Output Blocks

JDDZ@EDDD

.)\l

Programmable
Interconnect

Logic Blocks

[—)

r
O000C=000

D\
I
O

OOoOoObonon

Figure 4. An FPGA consists of a core of programmable logic blocks, surrounded by
programmable I/O blocks, interconnected with programmable wiring.

Table 3. FPGA vendors supply different architectures and process technologies.
Process Technology
Architecture SRAM Anti-Fuse FLASH
Altera
Atmel
DynaChip
Lucent
Vantis
Xilinx
Actel
Atmel

Coarse-Grained QuickLogic

Fine-Grained Actel Gatefield

user’s logic and routes the interconnections on the device much like a PCB autorouter
would place and route components on a board.

There are two primary classes of FPGA architectures—coarse-grained and fine-
grained, as listed in Table 3. Coarse-grained architectures are the most popular and
consist of larger logic blocks, often containing two or more look-up tables capable of
building complex logic functions and two or more flip-flops. The larger logic block
usually results in improved performance, especially as interconnect delay becomes more
significant with shrinking process geometries.

Most modern coarse-grained architectures also offer advanced features like
internal bi-directional bussing, fast arithmetic logic to boost the performance of adders
and counters, and on-chip RAM for building small register files or FIFOs.

The other architecture type is called fine-grained. In these devices, there are a
large number of relatively simple logic blocks. The logic block usually contains a flip-
flop and either a two-input logic function or a 4-to-1 multiplexer. These devices are good
at systolic and shifting functions and have some benefits for designs created by logic
synthesis.

Another difference in architectures is the underlying memory technology used to
manufacture the device. Currently, the highest-density FPGAs are built using static
memory technology, similar to most microcontrollers and microprocessors. The other
common process technology is called anti-fuse, which has benefits for more plentiful
programmable interconnect because of its small cell size.

SRAM-based devices are inherently re-programmable, even in-system. However,
they require some form of external, configuration memory source. The configuration
memory holds the program that defines how each of the logic blocks functions, which 1/O
blocks are inputs and outputs, and how the blocks are interconnected together. The
FPGA either self-loads its configuration data or an external processor downloads the data
into the FPGA. When self-loading, the FPGA addresses a standard byte-wide PROM—
much like a microcontroller addresses its boot PROM—or it uses a special sequential-

access serial PROM. When downloaded by a processor, the FPGA appears much like a
standard microcontroller peripheral. The configuration time is typically less than 200 ms,
depending on the device size and configuration method.

In contrast, anti-fuse devices are one-time programmable (OTP). Once
programmed, they cannot be modified, but they also retain their program when the power
is off. Anti-fuse devices are programmed in a device programmer either by the end user
or by the factory or distributor. Again, in-system programmable technologies are an
advantage in configurable embedded systems.

Hybrid Devices - FPGA or CPLDs with microcontroller interface

A few vendors offer FPGA or CPLD devices with an integrated microcontroller
interface. Most popular among these is the WSI PSD (Programmable System Device)
family, which integrate a small amount of CPLD logic, up to 2Kbytes of RAM, and up to
128Kbytes of EPROM. Some variants include additional peripherals such as
timer/counters and power supervisory functions.

Only a few FPGA devices offer dedicated interfaces. Lucent Technology's
ORCA 3 FPGA family offers a rudimentary, glueless microcontroller interface to Power
PC and 1960 processors. Other devices, such as the Xilinx XC6200 family provide a
memory-mapped interface to the FPGA's internal configuration storage.

Configurable Processors

A configurable processor is a highly integrated device, combining a dedicated
processor and programmable logic in a single, configurable device. A configurable
processor incorporates most—if not all—of an embedded system’s logic. While each
vendor's product family offers some unique features, most contain

» A silicon-efficient, dedicated processor

* Dedicated peripherals attached to the processor or to the internal bus,
including such functions as additional timer/counters, UARTS, or DMAs

* Programmable logic using CPLD- or FPGA-style technology designed to
implement programmable peripherals or other user-defined functions

» A dedicated, high-performance bus providing high-bandwidth communication
between the processor and its peripherals, allowing easy MCU integration of
new functions built from programmable logic

e Abundant programmable /O pins, many more than even the most I/O-rich
microcontroller

Configurable processors have the good assembler, compiler, and debugging
support of a stand-alone MCU. Compared to the 'MCU plus CPLD/FPGA' or 'Roll-Your-
Own' approaches, the predefined and tested bus architecture dramatically reduces system
design and verification time. Likewise, the configurable processor’'s dedicated bus
improves system performance by reducing intercommunication delays between the

CPSU Device

Programmable 1/0 A Programmable 1/0

Dedicated N AN

Processor N— /]
o o °
2 E 2
E Dedicated | o Programmable g
£ Peripheral N > Logic £
€ eripherals & £
g o
g NEs 5
a Debug/ — \(lrtual user | | &

Hardware < peripherals { logic

Breakpoint Unit

Programmable 1/0

Figure 5. A configurable processor integrates a dedicated processor, its
peripherals, an on-chip bus, and programmable logic all onto a single
pre-tested device.

processor and any peripherals implemented in programmable logic. The bus also
provides easier integration of programmable peripherals with the MCU and its
development software.

Compared to a fixed-architecture stand-alone processor, a configurable processor
offer incredible architectural flexibility and significantly more programmable 1/0s. A
configurable processor's integration reduces board size, power consumption, and EMI
emissions.

Configurable processors are a new, emerging category of devices with several
companies announcing devices or development plans. Siemens plans to integrate their
32-bit TriCore processor with Gatefield's FLASH-based, fine-grained FPGA family. No
further details are yet available.

Motorola planned to integrate the 32-bit ColdFire processor, peripherals, and their
MPA fine-grained FPGA technology in a new product family called CORE+.
Unfortunately, Motorola’'s CORE+ efforts died when Motorola decided to exit the FPGA
business due to their long-suffering FPGA market share.

National Semiconductor, with funding from DARPA, is developing a device with
a 32-bit RISC processor and a fine-grained FPGA technology acquired through the now-
defunct Concurrent Logic. National's technology, called NAPA100O, is targeted toward
reconfigurable computing and National has not yet revealed their commercial plans.

Triscend Corporation is developing various families of configurable processors
based on popular, industry-standard microcontrollers and processors. Their devices
feature a high-performance, integrated bus and SRAM-based, coarse-grained
programmable logic. Additional interface logic simplifies the design and improves the
performance o¥irtual peripheralsimplemented in programmable logic.

SUMMARY

Configurable embedded systems can be built from off-the-shelf programmable
technologies such as microcontrollers, FLASH, programmable logic, and configurable
processors. Configurable systems provide time-to-market, performance, and integration
benefits. Configurable processors are an emerging class of devices that promise to
accelerate this trend.

USEFUL SITES & MORE INFORMATION

FPGAs/CPLDs/Configurable Processors

"The Programmable Logic Jump Station":
http://www.fpga-site.com

Programmable ASICs (frompplication-Specific Integrated Circuits by

Michael John Sebastian Smith):
http://spectra.eng.hawaii.edu/~msmith/ASICs/HTML/Book/CH04/CHO04.htm

"Roll-Your-Own" MCUs

"Homebrewing RISCs in FPGAS", presentation by Jan Gray:
http://www3.sympatico.ca/jsgray/s1ld001l.htm

Embedded System Conference, Fall 1998, Related Classes
Class 509 & 529: "An Introduction to FPGA Design", Bob Zeidman
Class 470: "Prototyping Embedded Microcontrollers in FPGAs", Eric Ryherd
Class 402: "Roll Your Own RISC", Tom Cantrell

http://www.fpga-site.com

	INTRODUCTION
	Only One Thing Remains Constant: Change
	Key Design Considerations

	CONFIGURABLE EMBEDDED SYSTEM DESIGN
	System Design Trends
	Comparing Today's Design Alternatives

	CONFIGURABLE EMBEDDED SYSTEMS TECHNOLOGIES
	CPLD - Complex Programmable Logic Device
	FPGA - Field Programmable Gate Array
	Hybrid Devices - FPGA or CPLDs with microcontroller interface
	Configurable Processors

	USEFUL SITES & MORE INFORMATION
	SUMMARY

