Class 330

Configurable Embedded Systems: Using Programmable Logic to Compress Embedded System Design Cycles

Steven Knapp (sknapp)
Arye Ziklik (arye)

Triscend Corporation www.triscend.com

Agenda

- Forces Shaping Embedded Design
- Types of Design Solutions
- Programmable Technologies
- Technical Challenges

Key Forces Shaping Embedded Systems

Why 'Configurable'?

Time-to-Market

- Fast iterations
- Fast in-system, real-time debugging
- Fast component availability

Adaptability

- During design and debug
- In the field
- In the application

Performance

- Match the architecture to the problem
- Fast response to real-time events
- Parallel operations
- Increased Differentiation

Types of Design Solutions

- Stand-Alone Processor
- Processor Derivative
- Processor + ASIC
- Processor + Programmable Logic
- Custom Processor in Programmable Logic
- Custom Processor in ASIC
- Configurable Processor
- System on a Chip

Embedded System Solutions

High

Low

Hardware Customization	Custom Logic	Configurable Logic (off the shelf)		
Instruction Set	System on a chip Processor + ASIC	"Roll your own" in FPGA Configurable processor (on-chip accelerator)		
Peripheral Set. System Architecture	System on a chip Processor + ASIC	Processor + FPGA Configurable processor		
I/O, Interface, Decoding	Processor + ASIC	Processor + CPLD/FPGA Configurable processor		
None	-	Stand-alone processor or derivative		

Highest Customization

Fast Time-to-Market

History of Configurable Technologies

Year

EMBEDDED SYSTEMS CONFERENCE

Today's Configurable Technologies

- Complex Programmable Logic Devices (CPLD)
- Field Programmable Gate Arrays (FPGA)
- Hybrid Devices
 - Processor interface
 - Programmable logic
- Configurable Processors
 - Integrated processor
 - Programmable logic
 - Dedicated on-chip bus
 - On-chip memory

What is a CPLD?

A function block is similar to a PAL or PLD

Function Block

Function Block **Switch Matrix**

M.C. M.C. M.C. M.C. M.C. M.C. M.C.

Function Block

CPLD Vendors

Company	CPLDs	PLDs/PALs	
Altera	MAX	Classic	
Xilinx	XC9500	-	
Vantis	MACH	PAL	
Lattice	pLSI, GALs	GAL	
Cypress	Flash 370, PAL	PAL	
Atmel	ATF, ATV	ATF	
TI	-	PAL	
Philips	CoolRunner	-	
ICT	-	PEEL	

What is an FPGA?

FPGA Vendors

Process Technology

Architecture	Static Memory	Anti-Fuse	Flash	
Coarse- grained	Altera (FLEX) Xilinx (Spartan, 4KX, Virtex) Lucent (ORCA) Atmel (AT40K) Vantis (VF1) DynaChip	QuickLogic (pASIC)		
Fine- grained	Atmel (AT6000)	Actel (ACT, MX, SX)	Gatefield	

Comparing CPLDs and FPGAs

	CPLDs	FPGAs
Key Attributes	Fast pin-to-pin delay Predictable timing Wide fan-in Easy to use	Very high density Lots of I/Os and flip-flops Generally lower power Advanced features (RAM)
Typical Applications	IFACI MAMANA INIANAAAC	Logic consolidation Board integration Replace obsolete devices Simple state machines Complex controllers
Design Timing	Usually fixed, PAL-like Fast pin-to-pin delays	Application dependent High internal performance
Process Technology	EPROM (OTP) EEPROM (some ISP) FLASH (some ISP)	SRAM (ISP) Anti-fuse (OTP) EEPROM (ISP)
Power Consumption	0.5-2.0W static (some "zero power") 0.5-4.0W dynamic	Very low static Dynamic consumption is application dependent, 0.1-2W typical

See also: www.optimagic.com/faq.html

Programmable Logic Market Data

(Reference)

Ranking	Vendor	Revenues (millions)		'96-'97	Market Share	
		1997	1996	Change	1997	1996
1	Altera	\$ 631	\$ 497	27%	31%	27%
2	Xilinx	\$ 574	\$ 509	13%	28%	27%
3	Vantis	\$ 243	\$ 248	-2%	12%	13%
4	Lattice	\$ 237	\$ 220	8%	11%	12%
5	Actel	\$ 156	\$ 150	4%	8%	8%
6	Lucent	\$ 97	\$ 91	7%	5%	5%
7	Cypress	\$ 52	\$ 68	-24%	3%	4%
8	Atmel	\$ 31	\$ 27	15%	1%	1%
9	QuickLogic	\$ 29	\$ 25	16%	1%	1%
10	TI	\$ 18	\$ 23	-22%	1%	1%
TOTAL		\$ 2,068	\$ 1,858	11%		

Source:

Electronic Buyer's News, 30-MAR-98 **The Programmable Logic Jump Station**

See also: www.optimagic.com/market.html

Hybrid Devices

- WSI Programmable System Device (PSD)
 - 8- or 16-bit MCU interface
 - CPLD-style macrocells
 - on-chip memory
- Lucent ORCA 3 and 3+ FPGAs
 - Motorola/IBM PowerPC interface
 - Limited Intel 960 interface
 - Limited connectivity to FPGA array

What Is a Configurable Processor?

- Industry-standard processor
- Dedicated bus
- Programmable Logic
 - Soft peripherals
 - User-defined functions
 - Hardware acceleration
- On-Chip Memory

Triscend E5 Configurable Processor

Case Study: Our Own Derivative

Case Study: Technical Challenges

- Communication between the processor and programmable logic functions
- Maintaining a standard development flow
- Debugging a system with both processor and programmable logic

Communication between the Processor and Programmable Logic

- Routing data and address bus
- Decoding/controlling bus transactions
- Register intimacy
- Debugging

Routing Bus Signals: FPGA Example

I/Os between devices

- Many required, even for basic 8-bit interface)
- Adds delay to critical path
- Extra power consumption and EMI in two-chip solution

Distributing address/data on-chip

- Uses programmable interconnect
- Adds delay to critical path
- Variable delays in some architectures
- Some devices provide bidirectional bussing

Another Approach: CSI Bus Socket

(Configurable System Interconnect)

- Distributes address and data to CSL matrix
 - No additional I/O required
 - Dedicated address decoding
 - Predictable, synchronous timing
 - Forward compatible with future configurable processors
 - Wait-state control
 - Contention-free bussing

Decoding Bus Transactions

FPGA Style

Decode delay is fan-out and routing dependent

Decoding Bus Transactions

CPLD/PSD Style

Decode delay is constant

Decoding Bus Transactions

CSI Selector Style

 Decode delay is constant (less than 5 ns after clock)

Fast address decoding

- Any address range
- Access type
 - Code
 - Data
 - Special Function Register (SFR)
- Three modes
 - Selector
 - Chip Select
 - DMA Control Register
- Up to 200 selectors in a single device

Connecting the Two Development Worlds

Hardware Development

- Design and "soft" module libraries
- Passing register
 addresses to
 compiler/assembler
- Vendor place and route software
- Device programming support
- System-wide insystem debugging support

Software Development

- Compiler/assembler support
- Function libraries
- Instruction-set simulator
- System-wide insystem debugging support

Preserving Existing Tool Flow

Case Study Design: FastChip Software

Real-Time, In-System Debugging

- Difficult in most ASIC or system-on-a-chip designs
 - Must rely on simulation before completing design
- Most debuggers only support the processor
 - Monitor bus activity
 - Monitor processor registers
 - Break on event and single-step
- Additional debugging desired for programmable logic functions
 - Monitor the state of logic and flip-flops in "soft" peripherals
 - Monitor or force a breakpoint from programmable logic

Summary

- Configurable embedded systems offer potential benefits:
 - Faster time to market
 - Higher performance compared to discrete solutions
 - Higher product differentiation
- Configurable processors are a new class of single-chip programmable devices designed for embedded systems applications
 - Industry-standard processor
 - Dedicated, high-performance internal bus
 - Programmable logic, connected to internal bus
 - On-chip, high-density memory

Looking for More?

- Applications engineers available for questions
- Software demonstrations throughout the day
- CD-ROM with on-line tutorial and FastChip preview release
- Visit www.triscend.com
- Roll Your Own RISC (Wednesday, 8:30, Class 402)
- Prototyping Embedded Microcontrollers in FPGAs

(Wednesday, 4:00, Class 470)

 An Introduction to FPGA Design (Thursday, 8:30 and 10:30, Classes 509 and 529)

Questions?

