Class 413

Rapidly Developing Embedded Systems
Using Configurable Processor s

Steven K. Knapp
Vice-President, Applications
sknapp@ri scend. com

Triscend Corporation (Booth 160)
Mountain View, CA 94043
Web: www. tri scend. com

CONFIGURABLE PROCESSORS

A Configurable Processor is a single-chip combination of a microprocessor or
microcontroller, programmable logic, memory, and a dedicated system bus. The
programmable logic quickly implements user-defined peripheral functions, creating a
customized processor derivative. The user-programmable nature of Configurable Processors
minimizes time-to-market while offering a high degree of product differentiation.

In many ways, Configurable Processors are the next evolutionary step in embedded
system component technology. Microcontrollers combine processor and periphera functions
on a single chip, but allow little product differentiation. A single gate array or large
programmable logic device might implement multiple custom peripherals, but must still
interface to a separate processor. Embedding the gate array or programmable logic on a
single-chip with the processor represents the next integration step, alowing product
differentiation in a single-chip solution. The programmable-logic-based Configurable
Processor is more effective than the gate-array-based embedded array in applications where
fast time-to-market isimperative or production volumes do not justify a gate array solution.

Configurable Processors are highly-integrated devices capable of incorporating most,
if not al, of an embedded system’s logic. The basic functions included within most
Configurable Processor are described as follows.

A silicon-efficient, dedicated processor—often using an "industry-standard"
instruction set to leverage readily-available third-party development tools and
legacy code.

Dedicated peripherals attached to the processor or to the internal bus, including
functions such as timer/counters, UARTS, or DMAS.

Figure 1.

To external memory
for initialization and
code storage

Memory G Emmi —
Power Interface Selector
Control Unit Selector
“‘ Configurable
Clock and o) Selector System Logic
Crystal m (CsL)
Oscillator 8032 K> © matrix
Control “Turbo” I
Micro- e}
controller ”
Power-On 5
Reset ‘ @ Configurable System
3 Interconnect bus socket
Address -
EERN Viappers - qugs 2 Byte-wide
Bus System
Arbiter — RAM
Two-
oA Hardware
DMA Gl .
Controller Breakpoint
Unit
| JTAG Initialization
Interface - * Boot ROM

Configurable System
Interconnect (CSI) bus

A block diagram showing the functions available within the Triscend E5
configurable processor. Inthe E5, the embedded 8032 " Turbo" microcontroller
communicatesto its programmable logic resource (CSL) via a dedicated internal
busstructure[1].

On-chip RAM for storing local data or code.

Programmable logic designed to support user-defined peripherals or other
functions.

A method to communicate between the processor and the programmable logic.
Some devices have a dedicated, high-performance internal bus providing high-
bandwidth communication between the processor and its peripherals, allowing
easy MCU integration of new functions built from programmable logic. Other
architectures memory-map configuration bits within the programmable logic
allowing the embedded processor to "peek and poke" to hardware functions.

Abundant programmable I/O pins, many more than even the most 1/O-rich
microcontroller

Dedicated debugging hardware such as a breakpoint unit and JTAG interface.

Table 1. Available and Planned Configurable Processor s (December 1998)

Vendor/ Programmable Embedded Bus
Family Pr ocessor Status Dedicated Resour ces Resour ces Structure
2-channel DMA Triscend
Triscend/ " ., . 8K-64K bytes RAM ; 8-bit Data
E5 8032 "Turbo Sampling Hardware debug Coarsggramed, 32-bit Address
bus oriented
JTAG
Triscend .
Triscend ARM 7TDMI | In Development Coarse-grained, 32-b!t Data
- 32-bit Address
bus oriented
2-channel DMA
Motorola/ . 3K bytesRAM Motorola MPA Multiple busses
CORE+ ColdFire Cancelled DMA controller Fine-grained Unknown format
Hardware debug
16K RAM
National/ Compact- In Development 8x256 RAM Concurrent Logic
NAPA 1000 RISC P Timer Fine-grained
JTAG debugger
! . Plans Gatefield
Siemens TriCore Announced Fine-grained
Plans Atmel AT40K
?
Atmel) Announced Coarse-grained
SIDSA/ . SIDSA None,
n ,
FIPSOC 8031 Sampling? Programmable analog Coarse-grained Memory-mapped

CONFIGURABLE PROCESSORS DEVELOPMENTS

Configurable processors are a new, emerging category of devices. As of December
1998, various companies have announced configurable processor devices or development
plans, as shown in Table 1.

Triscend Corporation is sampling a Configurable Processor based around a high-
performance 8032 8-bit microcontroller architecture, shown in Figure 1 [1]. Triscend is aso
developing a family of devices based on the ARM 7TDMI 32-bit RISC processor [2].
Triscend's devices feature a high-performance, integrated bus and SRAM-based, coarse-
grained programmable logic.

Motorola announced a configurable processor family caled CORE+, shown in
Figure 2, which was to integrate a 32-bit ColdFire processor, peripheras, and Motorola's
fine-grained FPGA technology [3, 4]. Unfortunately, Motorolas CORE+ efforts died when
Motorola exited the FPGA business due to their long-suffering FPGA market share [5].

National Semiconductor, with funding from DARPA, is developing a device with a
32-bit RISC processor and a fine-grained FPGA [6]. Nationa's technology, called
NAPA1000 and shown in Figure 3, is targeted toward reconfigurable computing. National
has not yet revealed their commercial plans.

Other companies are reportedly developing configurable processors, including
Siemens with the TriCore media processor and Atmel [7, 8].

Ciock
= o, =
JTAG ‘E
Ineriscs :;w
KByl
mmctn | | Conboler | ZERE |G IO
8 g
sﬁu’h mtacs ——
Shared Fine Bus
osms || DeomgMocum il
CoFres | ! | b
CORE | & | Divida
DMA OMA zsir
Gontral Cortrolier Bis F
tacn &
Paraiol A
=] T MDA »
H
R
supn V|| ——— | 4
Inlarface
e ([ouar_]
Exinral
Enbeind FPaA
S D e] | et | | 2, (OB

Figure2. The CORE+ Configurable Processor based on Motorola's ColdFire
processor. The CORE+ project died along with Motorola's MPA FPGA
family [4].

CONFIGURABLE PROCESSOR BENEFITS

The Configurable Processor combines many of the best aspects of microprocessors
with those of programmable logic. Basing a Configurable Processor on a popular, widely-
used processor architecture takes advantage of the breadth of widely-available third-party
tools, as well as the wealth of knowledge and experience with that processor within the
embedded design community. The user-programmable nature of Configurable Processors
adds the flexibility, adaptability, and fast time-to-market advantages that have fueled the
rapid growth of the CPLD/FPGA market.

Design changes can be made easily, downloaded to the target device, and tested
within the target system. The extensive simulation and verification tasks associated with gate
array technology are avoided. Moreover, a Configurable Processor can have both its
peripheral logic and processor code upgraded in the field.

Configurable processors generally have the extensive assembler, compiler, and
debugging support of a stand-alone MCU. The predefined and tested bus architecture
dramatically reduces system design and verification time, especially compared to a system-
on-a-chip ASIC approach. Likewise, the configurable processor’'s dedicated bus improves

y. N[TBT |0
ToggleBus™ | ;
\ [/ | Transceiver x"x_J_yf
System M :
f [CR32 |/\[[\[RPC [\ LN\
CompactRISC™T, i Reconfigurakle, ALF ", /
32 Bit Processar| \ /| | 47/ | Pipeline Cntr | \[7 },r’; Adaptive Logic| \| I/
Processcr
/N BIU |/ PMA | /-0 Cgl o
Bus Interface |, Pipeline | :
| l/ Lnit "\ﬂg' Mermory Array \Fp"f e
External i
Memary CR32 /[J i SMA Jff‘I_f'*.\
Interface | peripheral _ Scratchpad | ;
Devices |}/ L Memery Array | [p‘f

Figure 3. National Semiconductor's NAPA1000 configurable processor isa product
of DARPA research funding [6].

system performance by reducing intercommunication delays between the processor and any
peripherals implemented in programmable logic. The bus provides easier integration of
programmable peripherals with the MCU and its development software.

APPLICATIONS OF THE PROGRAMMABLE LOGIC

The programmable logic portion of a Configurable Processor has many potential uses
including

Implementing common peripheral functions—e.g., additiona timers, 1/0 ports,
etc.—to create a custom processor derivative.

Implementing custom digital functions not typically available in any processor.

Hardware/software trade-offs, implementing algorithms in programmable
hardware instead of processor instructions.

Offloading time-critical functions from the processor.

Custom Functions or Peripheral Set

The programmable logic integrated within a configurable processor provides ample
flexibility to create custom peripherals. If an application requires additional timer/counters,
pulse-width-modulations, UARTS, or other functions, these can be implemented using
programmable resources and tailored for the specific application. Consequently, a designer
can rapidly create a customized processor derivative.

Should the application require unique digital functions not available in any processor
or microcontroller, the designer could create the function using standard logic design
methods and integrate the function within the configurable processor.

Hardware/Software Trade-Offs

The very nature of a Configurable Processor alows hardware/software trade-offs
with functions implemented using code in the processor or as hardware within programmable
logic. There are often significant performance advantages in offloading a function into
programmable logic.

Hardware Acceleration: Mapping an Algorithm to Silicon

Hardware Acceleration: Mapping an Algorithm to Silicon. The following example,
shown in Equation 1 and Figure 4, compares two implementations of an algorithm—one
implemented in software using the processor, the other implemented through hardware in
programmable logic. The example function computes the average of four inputs originating
from device input ports.

_(A+B+C+D)
4

The processor implementation samples each port sequentially, adding the input to the
accumulator. After computing the final sum, shifting the accumulator to the right twice
accomplishes the divide-by-four operation. The overall performance of the algorithm is
determined by the sum of the timing for all the individua instructions. This inherently
parallel function must be processed sequentially when using a processor.

Z

(Equation 1)

Compare this to the programmable logic solution. Offloading the function into
programmable logic alows the function to be computed in parallel. The programmable logic
implementation computes the average and provides it to the processor in lessthan 50 ns. The
processor could read the final result, Z, from aregister in the programmable logic. Multiple
functions can operate concurrently, independent of the processor.

Programmable logic is aso quite useful if the width of incoming data values exceeds

Processor |mplementation Programmable L ogic | mplementation

—>| Move PortA to Accumulator |

v

| Add PortB to Accumulator |

v

| Add PortC to Accumulator |

v

| Add PortD to Accumulator |

v

Shift Accumulator Right Twice
(divide by four)

—| Move Accumulator to RegZ |

Figure4. Two methodsto compute the average of four incoming data values—one
using a processor, the other using programmable logic. A Configurable
Processor allows various har dwar e/softwar e tr ade-offs.

the processor’s natural word width—i.e. processing 13-bit data on an 8-bit processor. When
incoming data is wider than the accumulator, the processor must spend additional instruction
cycles handling overflow conditions. By contrast, the width of the programmable function
uniquely matches the requirements of the function.

Rapid Response

Time-critical tasks can also be mapped into programmable logic, offloading the
processor and saving processor bandwidth. Programmable logic allows very fast response to
real-time events—down to tens of nanoseconds, much faster than the fastest interrupt
response time of any processor. Furthermore, programmable logic can respond to multiple
real-time events simultaneously.

Also, the programmable logic in conjunction with an internal DMA controller
offloads mundane data transfers from the processor. If the Configurable Processor has a
DMA controller, the DMA can transfer data directly from 1/O pins or peripherals into RAM.
Once the transfer is complete, the DMA could then interrupt the processor, indicating that
datais available.

COMMUNICATION BETWEEN THE PROCESSOR AND PROGRAMMABLE LOGIC

One important aspect of any Configurable Processor a high-bandwidth link between
the processor and the programmable logic resource. The benefits of an embedded bus also
include lower power consumption and reduced electromagnetic interference (EMI) because
bus signals rarely need to leave the device.

There are two basic approaches to providing communication between the processor
and programmabl e logic—memory-mapped architectures and bus-oriented architectures.

Memory Mapped

In memory-mapped devices, programmable functions appear at fixed addresses
within memory. Data and control values are written to memory locations within the
programmable logic resource. Using this approach, multiple read or write operations may be
required to send or retrieve the desired data, resulting in lower communication bandwidth
than a bus-oriented approach.

Bus-Oriented

In a bus-oriented approach, the system address and data busses connect to the
programmable logic resource. In some architectures, these busses are available only at the
edge of the programmable logic resource while in others, the busses are distributed
throughout the resource. The Triscend E5 is one example of a bus-oriented Configurable
Processor where the bus is distributed throughout the programmable logic resource.

In the Triscend E5, the Configurable System Interconnect (CSI) socket specifies
physical signaling for address and data paths, clock and control signals, and address
decoding. Built-in programmable address decoders provide “chip select” signals for the
various peripherals implemented in programmable logic. Additionally, the CSI socket steers

Side-band Signals
} Csli SockeAt Interface i
4 \

(1 2 Data Write 4
— & x
8032 g =
"Turbo" g% K Data Read g
Microcontroller = -
—A\] © 4’\
1 2 Address 8
c
I} » %
2 S b3
3 E 3
£ 2 =
2-Channel % Bus Clock 2
——N 1 N
DMA Controller c/>)~ DMA Request/ s
{ o Acknowledge re)
- o [* z
g Wait-State g,
> | Control .E
= | 8
[e) Breakpoint
Hardware | O Con'?rol
Breakpoint Unit [-

Figure5. The Configurable System Interconnect (CSl) distributes addr ess, data, control
signals, and addr ess decoding to the programmable logic resour ce (called the
Configurable System Logic) in the Triscend E5 Configurable Processor.

DMA request and acknowledge signals to the appropriate DMA channel, provides wait-state
control, and interfaces to the on-chip hardware breakpoint unit.

Processor signals unassociated with the CSI bus are called "side-band” signals and
connect directly to the programmable logic function. The CSI socket is designed to be
forward-compatible with future Configurable Processor families.

DEVELOPMENT TOOLS AND TECHNIQUES

Development flow for a Configurable Processor design follows the steps shown in
Figure 6. The steps shown are for the Triscend FastChip Development Software but the flow
issimilar for other Configurable Processor families.

Some applications require minor customization where the user wishes to create a
processor derivative on demand. In this case, the design can draw from libraries of common
peripheral functions and the overal flow is similar to that of other catalog processor
derivatives. Other applications require more substantial customization. In these cases, the
design flow is more similar to a gate array or system-on-a-chip design.

Defining the Hardware

The vendor's Configurable Processor development system allows the designer to
define the hardware functionality. The hardware definition consists of both the dedicated

3rd-Part: Configurable Processor 3rd-Party MCU
EDA Tools Development Software Developmeént Tools

- . . L— Existing
- Design Logic "Soft" “Soft" Peripherals Embedded System Vs Code Library
Lilﬁ?grlices \\.' SC"Q";}?‘SDCL&P‘“'E \'V or Logic Modules /‘V D’:IvceLljog;deit

] Y XV
Functional > T
Simuiaton 2| Header
iles
Code Simulation
Checking, System
Address

/ and Debugging
ress

Management
] <

Generate Header Object
Files Code
o
¥

Programmable
. Logic/System
Timing Verification

i

oo |

JTAG Link v A

Conversion to
Triscend Netlist

Design Rule

Enhlanced Real-Time
Real-Time
N—{ In-System B ettt . In-System

Debugging Debugging

Target System

Figure6. Detailed configurable processor design flow. Designers create a custom
processor derivative using pre-defined “ soft” modules. User can also create
custom peripherals using schematic capture or logic synthesis design tools.

resources such as the processor and its "hard" peripherals plus any "soft" functions
implemented using programmable logic resources.

To define the functionality of the programmable logic resources, a designer either
leverages a library of pre-defined "soft" functions or creates custom logic using standard
design entry methods such as schematic capture or hardware description languages.

Figure 7 shows how a user defines the hardware, using the Triscend FastChip
Development System as a reference. The designer first decides which peripherals are
necessary for the embedded system. From the library of pre-existing soft peripherals, the
designer then "drags and drops' the desired peripherals into the programmable logic area. As
each soft peripheral is added, graphical gauges provide the user with dynamic feedback on
the amount of programmable logic resources that remain.

The Triscend FastChip development system includes many soft peripheral modules.
However, the system also alows the user to create custom functions using standard
schematic editors or logic synthesis tools and import them viaan EDIF 2.0.0 netlist.

After the modules are "dragged and dropped”, graphical interfaces are then used to
select the parameterized options for each function (for example, timer/counter options would
include operating mode, clock source, and initial value). This graphical parameterization is
also used for the dedicated functions, such as the processor's native timer/counters.

MTliscend FastChip: AAA [Target Device: TES20532-400Q]) [Preview Releaze]

W4 File Edit View Tools Personalize Help

%@%@%@@a@@ M

Project |Library Import EDIF I/O Editor Generate Bi Downlead Debug ‘ Log Stop

Triscend Library 2x @Dedlcated Resources
R R R 7 T | == = = B
b 18032 Peripheral LI, iy {‘fg’ [B | EH=H| [:]
~ | Clocks | | Timer I] | Timer 1 | Timer _Z7—UART || Interrupts| Wai i i
(= MRS = - @l Graphically specify the
P ndicned ResourceslE configurable processor’s
&= Logic Modules g p

» (1 Arithmetic : : ; dedicated resources.
ot -4/LE <& Configurable System Logic ‘2| &y

»_ | Registers =

14 a

| & J Coffpare 23 QIE

B _110 CaptweLow| | 24BitCr CaptureMid | C onnterCtrI SevenSegment| 7seq_A||7seq_B
b | Test

The “soft” module library ?ng;mmm IO Pins 2| & BNy “Drag and drop” soft
provides parameterized, ' peripherals from the library to

pre-verified peripherals. ﬁﬁéﬁf—j |’Tﬂ— create a “derivative on
ReadSwitch| Display_A| | Display_B| | CaptureStro

[T e demand.
/> Resources Uséd 2|
ﬂ‘[[CSL Cells: 13&12043 | 8% +-CSlSelectors: 22/128 W17 % If'%Pins: 39/125

19 @Peﬁ;}'hm@pce: 40 MHz
o

| Ready.

Monitor the resources
required for a design and
its estimated performance.

ﬂ!rur-rnd Fazblhip: BRI
Component Mame: | mimer 1
“Timer Mode (TMOD.5, TMOD.G) 2=

| ®

o MODE 0: 8-bit imer'ceunter in THI | %
with a divide-by-32 pre-scaler in TL1 | 1:' Datalfdl] H

1 -4—#(-

o MODE 1: 16-kit tmar‘ceunter in TH1 L
amd TL1 =

MODE 2 B-bit timer/countar in TL1

@ with an B=bit aute-reload register s
in TH1 | e ———E]
Dalafra] E|=2E
5 MODE 35 Timar 1 nAlds [Vakia (psed i - ‘\d—v)
confuchion with Flrser 0) | TR1 E

Counter Clock Source 7|=| '
& TMER: Bus Clock divided by 12 |
(2 compatiling o)

'HME!_ Bus Clock divided by 4
#* Turbo moda)

COUNTER: Event an T1 sideband signal |
Twmeroptons 2=
wEnable counterpet ey ||

Figure 7. Defining the configurable processor hardware using the Triscend
FastChip Development System. Standard peripheral functions can be
loaded from the “ soft” modulelibrary. Dedicated resources are also
specified graphically.

Creating the Hardware

After defining the hardware functionality, the Configurable Processor software then
maps the user’s specification to hardware resources. In the Triscend development flow, this
process is caled “Bind” and is similar to the place and route step in printed circuit board
design. The “soft” modules are mapped to specific programmable logic resources and
connected to internal bus resources, if applicable. The result of this process is a binary file
that, when combined with the object file from the processor’'s compiler, initializes the
processor and programmable resources upon power-up.

Interfacing to third-party development tools

After all the soft peripherals are designated and the parameterization is complete, the
Configurable Processor software automatically produces a “header file” that assigns logical
addresses and symbolic names for the registers within the “soft” peripherals. The user
references this header file from within the application code to assist with the application code
development. The assembler/compiler uses this information to generate the appropriate
object code.

Program Development

After defining the hardware function, the bulk of the development tasks are those
similar to any embedded system design. The processor’s application code is developed and
debugged using standard devel opment tools.

A programmer uses standard processor development tools to begin developing
application code—typicaly in "C" or "assembly". Many programs also re-use code written
for previous applications. The header file, created earlier, provides al symbolic naming and
address locations for any soft peripheral. The programmer can then treat these functions as
dedicated functions, removing the need to know how they were physically implemented.
After the code development is complete, the finished code is then compiled (or assembled)
into object code.

After creating code, the designer verifiesits functionality. The first phase istypically
logical verification, to test code functionality. In applications with complex real-world signal
conditions, it may be difficult or impossible to model comparable conditions. Consequently,
thorough verification is often left to in-system testing.

Creating and Downloading the Initialization File

An initiaization file contains the information to completely specify the configurable
processor design. It combines the binary pattern that defines all of the “soft” functionality
plus the user’ s object code.

The initialization file can be loaded in the device in avariety of ways. Typically, the
initialization data is stored in a standard external byte-wide PROM, usually EPROM or
FLASH. Upon power-up, the configurable processor loads bootstrap code from the external
PROM, loading data for both the embedded processor and the programmable logic. Some
devices even support serial PROMs to conserve 1/0 pins on the configurable processor.

For fast debugging, the initialization file might be downloaded directly into the part
using a serial interface such as JTAG.

In-System Debugging

The stage is now set for exhaustive system verification. At this point, the designer
has the Configurable Processor in its target system operating at full-speed, possibly in an
environmental chamber to provide worst-case operating situations. The Configurable
Processor typically connects to a PC for debug monitoring and runtime control.

Some development systems, such as Triscend’ s FastChip software, allow the designer
to use familiar third-party debugging tools such as a source-level debugger. Commands from
the debugger are trandated by the FastChip software into JTAG commands that control the
Triscend Configurable Processor’ s hardware breakpoint unit. This provides the designer with
a familiar real-time debugger environment to control and monitor the Configurable
Processor, including managing breakpoint events and examining internal register contents.

In some situations, a designer may wish to perform more advanced debugging that
interacts with functions in the programmable logic, including those unassociated with the
processor or the internal bus. The Triscend FastChip software provides a debugging utility
for designers who desire to delve into this level of detail. This utility provides observability
and control of each logical and sequential node within the programmable logic allowing the
designer to mix processor debugging techniques with logic debugging.

COMPARISONS WITH OTHER TECHNOLOGIES

Configurable Processors offer significant time-to-market advantages compared to
ASIC “system-on-a-chip” solutions. Programmable technologies eliminate the non-
recurring engineering (NRE) charges associated with semi-custom solutions, though at a
higher per-unit cost. In general, Configurable Processors share many of the cost/benefit
advantages of other programmable logic technologies such as FPGA and CPLD.

Compared to a fixed-architecture stand-alone processor, a configurable processor
offers incredible architectural flexibility and significantly more programmable 1/0s. A
Configurable Processor's integration reduces board size, power consumption, and EMI
emissions.

SUMMARY

Configurable Processors are an emerging category of devices targeted at
embedded system designs with stringent time-to-market demands. Configurable
Processors allow a designer to quickly create a cost-effective custom processor
derivative.

REFERENCES

[1]

[2]

3]
[4]
[5]
[6]
[7]

(8]

“Triscend E5 Configurable Processor Family,” product description, Triscend
Corporation, November 1998 (www.tri scend.com/products/dsebcpsu. pdf).

“Triscend Announces Industry's First 32-bit Configurable Processor Will Be ARM-
based,” press release, Triscend Corporation, November 9, 1998
(www.triscend.com/whatsnew/IndexSharpArm.html).

“Motorola chip to combine ColdFire, FPGA cores,” EDTN, February 3, 1998
(http://www.eetimes.com/news/98/992news/motorola.html).

“MPACF250 - MPA’s CORE+ ™ Reconfigurable System,” product brief, Motorola,
March 1998.

“Motorolathrowsin towel on FPGAS,” EE Times, June 29, 1998
(http://www.techweb.com/se/directlink.cgi ?EET19980629S0034).

“NAPA 1000 Adaptive Processor,” National Semiconductor
(http://www.nati onal .com/appinfo/mil aero/napal 000/ppframe.htm).

“Oxford lab work rekindles codesign interest -- STM looks anew at integrating cores
with FPGA,” EE Times, April 20, 1998
(http://www.techweb.com/se/directlink.cgi PEET 19980420S0045).

“Atmel, startup prep configurable microcontrollers,” EE Times, August 3, 1998
(http://www.techweb.com/se/directlink.cgi ?EET 19980803S0007).

	CONFIGURABLE PROCESSORS
	CONFIGURABLE PROCESSORS DEVELOPMENTS
	CONFIGURABLE PROCESSOR BENEFITS
	APPLICATIONS OF THE PROGRAMMABLE LOGIC
	Custom Functions or Peripheral Set
	Hardware/Software Trade-Offs

	COMMUNICATION BETWEEN THE PROCESSOR AND PROGRAMMABLE LOGIC
	Memory Mapped
	Bus-Oriented

	DEVELOPMENT TOOLS AND TECHNIQUES
	Defining the Hardware
	Creating the Hardware
	Interfacing to third-party development tools
	Program Development
	Creating and Downloading the Initialization File
	In-System Debugging
	COMPARISONS WITH OTHER TECHNOLOGIES

	SUMMARY
	REFERENCES

