
Rapidly Developing
Embedded Systems

Using Configurable Processors

Steven Knapp
(sknapp@triscend.com)

Triscend Corporation
www.triscend.com

Class 413

© Copyright 1998-99, Triscend Corporation. All rights reserved.

(Booth 160)

Agenda

• What is a Configurable Processor?
• Configurable Processors architectures
• Building custom peripherals
• Hardware/software trade-offs, algorithmic

acceleration
• Comparing the alternatives
• Configurable Processor technical challenges

– Communication
– Software development environment
– Debugging

• Summary

Terminology Used in this Session

• Configurable Processor
– Embedded processor core
– Programmable logic to build peripherals
– Dedicated System Bus
– On-chip memory

• User-Definable Processor
– Parameterized or changeable processor

hardware description
– Typically synthesizable from VHDL/Verilog
– Usually targeted to ASIC or system-on-a-chip
– Examples: ARC, Tensilica, etc.

Trends Toward the
Configurable Processor

• Decreasing Time-to-Market
– Fast iterations
– Fast in-system, real-time debugging
– Fast component availability

• More Adaptability
– During design and debug
– In the field or in the application

• Higher Performance
– Match the architecture to the problem
– Fast response to real-time events
– Parallel operations

• Increased Differentiation
• Ever-improving Process Technology

Toward a Configurable Processor

2000

In
cr

ea
si

ng
 F

un
ct

io
na

lit
y,

 D
en

si
ty

, a
nd

 P
er

fo
rm

an
ce

1980

MCU TT
L

TTL

Periph-
eral

PA
L

Periph-
eral

EPROM

RAM

TT
L

Discrete Solutions

"System
on a

Chip"

1990
Year

MCU
Derivative

Periph-
eral

CPLD/
FPGA

RAM

EPROM/
FLASH

MCU Derivatives and
Programmable Logic

MCU
Derivative ASIC

"Roll-Your-
Own" MCU in

FPGA

EP
R

O
M

Configurable
Processor EP

R
O

M
/

FL
A

SH

Configurable
Processors

What Is a Configurable Processor?

• Industry-standard
processor

• Dedicated bus
• Programmable

Logic
– Soft peripherals
– User-defined

functions
– Hardware

acceleration
• On-Chip Memory

Dedicated
Processor RAM

Dedicated
Peripherals

Hardware
Breakpoint

Sy
st

em
 B

us

Programmable
Logic

Pr
og

ra
m

m
ab

le
 I/

O

Programmable I/O

Pr
og

ra
m

m
ab

le
 I/

O

Programmable I/OProgrammable I/O

Soft
peripherals

User
logic

Configurable Processors
Vendor/
Family Processor Status

Dedicated
Resources

Programmable
Resources

Embedded Bus
Structure

Triscend/
E5

8032
"Turbo" Sampling

2-channel DMA
8K-64K bytes RAM
Hardware debug
JTAG

Triscend
Coarse-grained,
bus oriented

8-bit Data
32-bit Address

Triscend ARM
7TDMI

In
Development

Triscend
Coarse-grained,
bus oriented

32-bit Data
32-bit Address

Motorola/
CORE+ ColdFire Cancelled

2-channel DMA
3K bytes RAM
DRAM controller
Hardware debug

Motorola MPA
Fine-grained

Multiple busses
Unknown
format

National/
NAPA
1000

Compact-
RISC

In
Development

16K RAM
8x256 RAM
Timer
JTAG debugger

Concurrent
Fine-grained

Siemens TriCore Plans
Announced

Gatefield
Fine-grained

Atmel ? Plans
Announced

Atmel AT40K
Coarse-grained

SIDSA/
FIPSOC 8031 Sampling? Programmable

analog
SIDSA
Coarse-grained

None,
Memory-
mapped

Motorola CORE+

3Kbyte
Embedded

RAM

External
Bus

Interface
I2C

Controller

DUART

Timers
Slave Bus
Interface

DMA
Controller

Parallel
Port

Master
Bus

Interface
1Kbyte

Embedded
RAM

DRAM
Controller

External
Bus

Interface

Chip
Selects

Interrupt
Controller

Motorola
ColdFire

CPU Core

M
A
C

H/W
Divide

Debug Module

JTAG

8Kbyte
SRAM

8Kbyte
Instruction

Cache

Clock

Fine-
Grained
FPGA
Array

System
Bus

Controller

Shared Pins
FPGA I/O

National NAPA

National
CompactRISC

CPU

Bus Interface
Unit

Peripheral
Devices

ToggleBus
Transceiver

Reconfigurable
Pipeline

Controller

Pipeline
Memory Array

Scratchpad
Memory Array

External
Memory
Interface

System
Port

C
on

fig
ur

ab
le

 I/
OAdaptive

Logic
Processor

(fine-grain
FPGA

architecture)

Triscend E5 Configurable Processor

Configurable
System Logic

(CSL)
Matrix

PIO
PIO
PIO
PIO
PIO

PIO

8032
"Turbo"
Micro-

controller

Power
Control

Clock and
Crystal

Oscillator
Control

Power-On
Reset

Memory
Interface

Unit

Bus
Arbiter

Byte-wide
System

RAM

JTAG
Interface

Hardware
Breakpoint

Unit

Address
Mappers A
dd

re
ss

 B
us

D
at

a
B

us

Configurable System
Interconnect (CSI) bus

Two-
channel

DMA
Controller

Selector
Selector

Selector

CSI Socket

Configurable Processor Applications

• Custom Peripheral Set
– Practically any digital function
– Matched specifically to the application
– Derivative on demand

• Hardware Acceleration
– Algorithms in hardware
– Handling odd-size math
– Faster real-time response
– Multiple operations in parallel
– Bit manipulation

Custom Peripherals
(Hardware/Software Trade-Offs)

• Software Solution (µs to ms)
– Slow peripherals (serial ports, etc.)
– Limited by CPU performance (Scenix, Teragen)
– Easy to modify
– Cheap, re-use existing silicon

• Hardware Solution (ns to µs)
– Standard derivative (no differentiation)
– CPU + ASIC/FPGA (difficult to modify)
– Configurable Processor (easy to modify)
– Additional silicon/cost

Example: SPI Interface
• Find a processor derivative that matches

your requirements
– It has SPI, but does it have everything else you

need?
– Availability? Software support?

• Implement your peripheral in software (ex.
Scenix)

• Build your peripheral in an external ASIC
or FPGA

• Use a SPI soft peripheral in your
configurable processor

Design Techniques

• ‘C’ language
• Assembly
• Instruction-set

simulator
• Function library

• Schematic capture
• VHDL/Verilog entry
• Digital logic simulator
• Soft macros available

Peripherals in Software Peripherals in Hardware

Software Hardware

Hardware Acceleration Example

• Calculate the instantaneous average of
four 8-bit values

4
)(DCBAZ +++

=

• Issues
– Concurrency (I/O, processing requirements)
– Handling overflow (accumulator width)
– Performance (processing time)

Two Solutions

• Processor Solution • Logic Solution
Move PortA to Accumulator

Add PortB to Accumulator

Add PortC to Accumulator

Add PortD to Accumulator

Shift Accumulator Right Twice
(divide by four)

Move Accumulator to RegZ

A

B

C

D

Z÷4

More instances require
additional time

More instances require
additional logic

Comparing the Alternatives

Solution Device
Cost

Development
Time/Cost Issues When to Use It

Processor
Derivative $1 - $15 Quick/

Low
Availability, software
support,
differentiation

Lowest cost, if your
application fits

System-on-a-
Chip

$5 - $50
+ development

cost

Long/
High

Acquiring cores,
verification, NRE,
vendor selection

Volume, complexity,
performance justify it.

Fast
Processor $5 - $50 Moderate/

Low
Creating ‘soft’
peripherals

If it fits and it’s fast
enough, use it!

CPU +
ASIC/FPGA $10 - $100 Moderate/

Moderate

Multi-chip solution,
inter-chip
communication,
debugging support,
multiple CAE tools

For applications where
a configurable
processor does not yet
exist.

Configurable
Processor $8 - $80 Moderate/

Moderate New technology
Fast time to market,
complete embedded
system

Configurable Processor
Technical Challenges

• Communication between the processor
and programmable logic functions

• Maintaining a standard development flow
• Debugging a system with both processor

and programmable logic

Communication between the
Processor and Programmable Logic

• Distributing the data and address bus to
the programmable logic

• Decoding/controlling bus transactions
• Multi-master bus support
• Register intimacy
• Debugging support

?

One Solution: CSI Bus Socket
(Configurable System Interconnect)

• Distributes address and
data to CSL matrix
– Full access to data and

address bus
– Dedicated address

decoding
– Predictable,

synchronous timing
– Forward compatible with

future configurable
processors

– Wait-state and
breakpoint control

– Contention-free
bussing

Side-band Signals

CSI Socket Interface

Data Write

Data Read

Address

Se
le

ct
or

s

Bus Clock

Wait-State
Control

C
on

fig
ur

ab
le

 S
ys

te
m

 In
te

rc
on

ne
ct

 (C
SI

) B
us

C
on

fig
ur

ab
le

 S
ys

te
m

 L
og

ic

(C
SL

) M
at

rix

8032
"Turbo"

Microcontroller

Breakpoint
ControlHardware

Breakpoint Unit

DMA Request/
Acknowledge

2-Channel
DMA Controller

Decoding Bus Transactions

Match0

Match1

An A0A1A2

CSI Bus Address

RDSEL

WRSEL

READ

WRITE

BCLK

Bus Clock

RdSel

DATAData Read
[7:0]

CSI Selector Style

Decode delay is constant
(less than 5 ns after clock)

Fast address decoding
• Any address range
• Access type

Code
Data
Exported Special Function
Registers (SFR)

• Three modes
Selector
Chip Select
DMA Control Register

• Up to 200 selectors in a
single device

Connecting the Two Development Worlds

• Design and “soft”
module libraries

• Passing register
addresses to
compiler/assembler

• Vendor place and
route software

• Device programming
support

• System-wide in-
system debugging
support

Hardware Development Software Development
• Compiler/assembler

support
• Function libraries
• Instruction-set

simulator
• System-wide in-

system debugging
support

Preserving Existing Tool Flow

Configurable Processor Tools MCU Development Tools

Designer’s
standard tool flow

System
Configuration

Soft Module
Library

1
Program

Development

Source
Code
Library

2

Program
Debug

3
System Test
and Debug

4

Device
Programming

5

Header
File

Object
File

System on a Chip Flow
Configurable Processor
Development Software

MCU Development Tools

Designer’s
standard tool flow

System
Configuration

Source
Code
Library

Program
Development

In-System
Debug

System Test
and Debug

Device
Programming

Instruction
Simulation

Netlist

Capture or
Synthesis

Functional
Simulation

3rd Party
EDA Tools

Example System: FastChip Software
“Soft” Module

Library

Dedicated
Resources

“Soft” peripherals
dragged into
CSL matrix

Resources Used
Indicators

Real-Time, In-System Debugging
• Difficult in most ASIC or system-on-a-chip

designs
– Must rely on simulation before completing design

• Most debuggers only support the processor
– Monitor bus activity
– Monitor processor registers
– Break on event and single-step

• Additional debugging desired for programmable
logic functions
– Monitor the state of logic and flip-flops in “soft”

peripherals
– Monitor or force a breakpoint from programmable

logic

Configurable Processor
Debugging Capabilities

8032 RAM Test and
Control

Configurable
System Logic

CSI Bus

Triscend E5

Commands from 3rd
party debuggers
translated to JTAG
instructions

Access to all
address mapped
and other key
processor resources

Breakpoint unit
snoops the internal
bus, providing
complex runtime
control features

All sequential and
combinatorial logic
nodes have
complete
observability

Summary

• Configurable Processors offer benefits in
embedded system design:
– Faster time to market than ASIC/SOC designs
– Higher performance compared to most processors
– Higher product differentiation

• Configurable processors are a new class of
single-chip programmable devices designed for
embedded systems applications
– Industry-standard processor
– Dedicated, high-performance internal bus
– Programmable logic, connected to internal bus
– On-chip, high-density memory

	Rapidly Developing�Embedded Systems�Using Configurable Processors�
	Agenda
	Terminology Used in this Session
	Trends Toward the�Configurable Processor
	Toward a Configurable Processor
	What Is a Configurable Processor?
	Configurable Processors
	Motorola CORE+
	National NAPA
	Triscend E5 Configurable Processor
	Configurable Processor Applications
	Custom Peripherals�(Hardware/Software Trade-Offs)
	Example: SPI Interface
	Design Techniques
	Hardware Acceleration Example
	Two Solutions
	Comparing the Alternatives
	Configurable Processor�Technical Challenges
	Communication between the Processor and Programmable Logic
	One Solution: CSI Bus Socket�(Configurable System Interconnect)
	Decoding Bus Transactions
	Connecting the Two Development Worlds
	Preserving Existing Tool Flow
	System on a Chip Flow
	Example System: FastChip Software
	Real-Time, In-System Debugging
	Configurable Processor�Debugging Capabilities
	Summary

