

USING LOGICORETM MODULES FOR PCI CARD DESIGN

Bradly Fawcett, Steven Knapp, and Gary Lawman
Xilinx Inc.

2100 Logic Drive
San Jose. CA 95124

E-mail: pci@xilinx.com (PCP-139)

ABSTRACT

Intellectual property in the form of reusable
cores can be used during high-density FPGA design
to decrease development times and risks. The use
of one such core, the LogiCore™ PCI Interface,
accelerates the development of FPGA-based PCI
card designs. This paper examines the issues and
considerations surrounding the FPGA implemen­
tation of a PCI interface when using the LogiCore
module.

CORE-BASED DESIGN

Continuing improvements to both fabrication
processes and device architectures have led to
dramatic increases in Field Programmable Gate
Array (FPGA) device capacities and performance.
Taking advantage of these increasing capabilities
while maintaining time-to-market goals can pose
formidable design challenges - challenges that
cannot always be met by traditional gate-level
design techniques, or even HDLs and synthesis­
based design. For a growing legion of FPGA users,
reusable intellectual property in the form of design
"cores" (also referred to as "megafunctions" or
"drop-in modules") have become a key factor in
meeting the twin challenges of increasing design
complexity and shorter development cycles.

Simply put. cores are complex, pre-designed
and reusable functional blocks, typically hundreds
to thousands of gates in size. that can be included
as part of a larger FPGA design. The goal is to
allow FPGA designers to act as system integrators,
combining proven functional blocks with the
proprietary logic of the particular application.
Cores can be developed internally (for example, re­
used portions of previous-generation designs) or
purchased as intellectual property from the FPGA
vendor or a third-party provider. In order to
address a broad enough market to justify their
development, cores available for purchase typically
are "standard" functions that provide little

opportunity for product differentiation. Examples
include bus interfaces (such as PCI, PCMCIA, and
USB) and common DSP functions (such as FIR and
IIR filters). The selection of available cores is
growing rapidly.

The main benefit of cores is the decreased
development time and effort associated with using
a pre-designed, proven function. Designers can
focus their efforts on the proprietary portions of
their designs, rather than "re-inventing" a standard
function. Often, for complex functions such as PCI
interfaces, utilizing a core allows the user to access
the "system expertise" of the core's designers; the
user does not have to acquire similar levels of
expertise on that aspect of the design. Thus, the
"make or buy" decision often falls on the side of
purchasing the core, particularly for standard
functions that are needed for market acceptance but
contribute little to product differentiation.

For example, with the increased logic capacity
of the latest generations of FPGAs, a typical
application's unique control logic for the "back­
end" device being connected to a PCI bus can be
integrated with the PCI bus interface on the same
FPGA device. However, the performance
requirements of the PCI specification are
demanding even for advanced ASIC technologies,
and require FPGA designs closely tailored to the
device architecture. For this reason, and since the
PCI bus interface portion of the design is common
to many applications, several FPGA vendors offer
"pre-designed" PCI interface modules, as
exemplified by the Xilinx LogiCore PCI Interface
for the XC4000E FPGA family.

This paper overviews the issues involved with
designing FPGA-based PCI bus interfaces by
examining the use of the LogiCore PCI Interface.
Readers are assumed to have some knowledge of
the PCI bus protocols; complete information about
the PCI bus is available in the PCI Local Bus
Specification and several reference books.' ·3

THE LOGICORE PCI INTERFACE

The LogiCore PCI Interface is a fully­
integrated, tested, and validated schematic-based
PCI Local Bus interface module design targeted for
the XC4013E FPGA device: Both InitiatorlTarget
and Target-only versions are available. This
modular design can be customized by the user, and
supports the quick implementation of prototype and
production PCI applications. By minimizing the
engineering effort required to develop a PCI host
interface, use of the LogiCore PCI module can save
months of development time.

The LogiCore PCI Interface is a complete 32­
bit PCI interface compliant with version 2.1 of the
PCI Local Bus Specification. It supports all basic
PCI bus functions, including Type 0 configuration
space support, VO reads and writes, and burst-mode
memory reads and writes. Detailed schematics
form the core PCI interface design; the design was
implemented using Viewlogic Systems schematic
entry and simulation tools. Where applicable, logic
contained within the schematic is trimmed during
the compilation process (i.e., unused logic is
automatically removed from the design).
Placement constraints, timing constraints, and a
placement guide file are used to ensure that PCI
timing requirements are met. Both complete
schematics and a 'drop-in' XNF netlist are
provided. The module can be instantiated from
within an HDL source code file.

The LogiCore PCI Interface can be easily
customized to meet specific board-level design
requirements. The user can integrate the PCI
Interface with other modules to complete an
interface design; combining custom "back-end"
logic to the fully-tested PCI bus interface produces
a single-chip PCI VO adapter.

The LogiCore PCI Interface has been
optimized with a floorplanned layout for the
XC4013E-2PQ208 device, but can be ported to
other XC4000E and XC4000EX family FPGAs.
(However, all compliance testing was performed
using the XC4013E FPGA.) The full
Initiator/Target design occupies less than one-half
of the Configurable Logic Blocks (CLBs) in the
XC4013E device. leaving ample space for the
implementation of the custom back-end logic.
Fully-compliant 33 MHz PCI applications require
the -2 speed grade for the XC4013E device.
Embedded PCI applications, terminated busses, and
systems operating below 33 MHz may be able to
use a slower speed grade.

The major functional blocks of the LogiCore
PCI Interface are shown in Figure 1.

The VO Interface block handles the physical
connection to the PCI bus, including all signaling,
input and output synchronization, output three-state
controls, parity generation and checking, and (for
mitiator designs) request-grant handshaking for bus

PAR

PARITY BASE BASE COMMAND!
PERR- GENERATOR! ADDRESS ADDRESS STATUS

CHECKER REGISTER REGISTER REGISTERSERR- a 1

UJ l•••••••••:::·::':{{:':::',"""',·,'"
~U

c(Fu. c(a:: uUJ FRAME- :J
~ IRDY- VENDORID, Cl.

INITIATOR Cl.

~ STATE REVID, c(

OTHER USER a::
t5 REO- MACHINE UJ

Cl.
DATA (J)

GNT- =>

TRDY-

DEVSEL-
TARGET
STATE

STOP- MACHINE

Figure 1: LogiCore PCI Interface block diagram

mastering. Parity errors detected on the address
lines are flagged by asserting the SERR- signal, and
data parity errors are reported using PERR-.

The Target and Initiator State Machines
contain all the control logic for handling bus
transactions for target and initiator agents.
respectively. These controllers are high­
performance state machines that use one-hot
encoding for maximum performance. The states
implemented are a subset of the equations defined
in Appendix B of the PCI Local Bus Specification.
Table I lists the PCI bus commands currently
supported by the LogiCore PCI interface.

The Configuration Logic block holds the
Configuration Space Header, the command and
status registers used in operations such as "plug­
and-play" initialization. The first 64 bytes of a
Type 0, version 2.1 Configuration Space Header
are provided. Read/write registers are implemented
using flip-flops in the FPGA's configurable logic
blocks (CLBs), while read-only registers are
implemented as ROM memory using the CLB's
lookup tables, resulting in optimized packing
density and layout.

A simple, general-purpose interface is
provided for connecting to the application's back-

end logic, including a 32-bit data path and latched
address bus. Most of the module's internal data
paths and state machine control signals are included
in the user interface, providing ample flexibility for
customized user applications. Typically, the back­
end logic would include FIFO buffers to support
burst transactions on the PCI bus.

CUSTOMIZING THE LOGICORE PCI
INTERFACE

The LogiCore PCI Interface provides a
foundation PCI bus interface design that can be
tailored for the specific application. Besides adding
the unique back-end logic for the application, users
can customize the PCI bus interface itself. In most
cases, this customization simply involves replacing
particular symbols in the Viewlogic schematics
with other pre-prepared symbols, using the
schematic editor's 'Change Component' command.
The LogiCore module's design structure and
modifiable schematics are shown in Figure 2. The
back-end application logic that is to be integrated
onto the FPGA with the PCI bus interface should
be placed under the "userapp" hierarchy.

For users of the Initiator/Target version, the first
step in customizing the PCI interface macro is to
define whether the application is a target-only or

Table 1: PCI Bus Commands

PCI PCI
CBE[3:0] Command Master Slave

0000 Interrupt Acknowledge No* IQnore
0001 Special Cycle No* Ignore
0010 VORead Yes Yes
0011 VO Write Yes Yes
0100 Reserved Ignore Ignore
0101 Reserved Ignore IQnore
0110 MemorvRead Yes Yes
0111 Memorv Write Yes Yes
1000 Reserved Ignore Ignore
1001 Reserved Ignore Ignore
1010 Configuration Read Yes Yes
1011 Configuration Write Yes Yes
1100 Memorv Read Multiple Yes Yes
1101 Dual Address Cycle No* Yes
1110 Memorv Read Line Yes Yes
1111 Memory Write Invalidate No* Yes

*The Initiator can present these commands, but they require additional user-application logic.

Figure 2: Design Structure of LogiCore PCI
Interface

If the application is an initiator/target, and it
will never burst more than two data cycles, than a
Latency Timer can be disabled, conserving space

initiator/target function. As delivered, the macro is
configured as an initiator/target interface;
configuring the macro to be a target-only interface
requires changing one symbol on the top level
schematic.

and simplifying the control logic. Similarly, if the
application supports only single data transfers, then
the pipelining logic can be disabled.

BUILDING TARGET AND INITIATOR
INTERFACES

A target interface is part of every PCI bus
interface design, regardless of whether the bus
agent is an initiator/target or target-only interface.
Creating a target interface using the LogiCore
module involves the following steps: configuring
the Base Address Registers, defining the read-only
values for the Configuration Space Header ROM,
building the interface between the PCI module and
the application's unique back-end logic, and (if
required) deciding how to force Target Termination
conditions.

In the majority of applications, data is
transferred to and from read/write registers in the

Completing a PCI bus interface design using
the LogiCore PCI Interface module can be broken
down into three main sub-tasks: building the
target-side interface, building the initiator interface.
and, optionally, providing for the support of burst
transfers.

The user application can force various target­
initiated termination conditions. The state of two
signals, TERM and READY, that have their source
in the user application logic, determine the
termination condition. A Target Retry condition
informs the initiator that it must try the transaction
again later. A Target Disconnect indicates that the
target is no longer able to continue the transaction
(for example, due to a full FIFO buffer during a
burst write operation); data mayor may not be
transferred on the disconnect cycle. A Target
Abort signals a serious error at the target that
prevents the requested transaction.

Creating the initiator portion of a PCI interface
also involves building the appropriate interface
between the LogiCore module and the back-end
application. Before designing the initiator's control
logic, several aspects of its operation must be
defined, including the type and speed of data
transfers initiated by this agent, the desired
response to the target-generated termination
conditions described above, and the method of
arbitrating between a pending initiator request and
an incoming target transaction.

DONor
MODfFY

- Configure Base Address Registers
- Enable Interrupts
- Modify selting in configuration ROM

pci-rom.l W
::..,~~

- Set Device and Vendor 10
- Enter Class Code and Revision 10

- Master/Slave selting (Initiator onlYI
- Enable Latency Timer (Initiator on y)
- Enable Data Sourcing Pipeline

pci_lc_i.2 .,
..w.:.$:

l>(·:tLz~~. ~ ~~-------
1>':1 __1<:-_1.4

p(~:L.)c... :! <-'

~,

C-=~~~J

lLC PC!
Ub~<1ry .

~",...,_......

DONOi'
t/iOOfFY

Many of the customization options involve the
PCI configuration register space. The default
configuration includes two Base Address Registers,
a Command Register, a Status Register, an Interrupt
Pin and Line Register, and a read-only memory
space for the Device ID, Vendor ID, Class Code,
and Rev ID registers. All remaining locations in
the CSH return a value of zero during configuration
reads, and no operation occurs during configuration
writes. If desired, additional locations in the CSH
can be added by the user. Base Address Register
sizes and modes can be altered by changing
symbols on the schematic. A modifiable table
included on the schematic for the read-only
registers, such as Device ID, allows users to easily
define their contents.

back-end logic. These registers often are part of a
FIFO buffer, but also may be connected to I/O pins
or other logic. Figure 3 illustrates a typical data
connection. A clock enable signal (CLK-ENA) is
used to control the capturing of data from the PCI
bus (for example, when writing data to a target),
and three-state buffers control the routing of data
back onto the bus (for example, when reading from
a target).

In order to meet the PCI bus' stringent
performance requirements, the LogiCore interface
pipelines all the bus control signals and the data
path. Consequently, some signals must be
presented up to two clock cycles before they appear
on the PCI bus. Likewise, arriving signals are
captured and available to the back-end logic one
clock cycle after they appear on the PCI bus.
Appropriate signals are included in the LogiCore
module's back-end interface to signal the
appearance of valid address and data information.

It is highly recommended that all signals to or
from the back-end interface should be registered.
Good synchronous design techniques can increase
system performance and simplify timing analysis.

SUPPORTING BURST TRANSACTIONS

Performing a single data transfer across the
PCI bus is the simplest type of transaction.
However, because of the overhead of distributed
address decoding, this wastes valuable bus
bandwidth. Achieving high bandwidth requires the
use of burst transactions, where multiple data words
are transferred during each transaction.

In PCI bus burst transactions, only the starting
address is broadcast over the bus. Thus, during
burst transfers, the back-end logic must keep track
of the current address. Typically, both target and
initiator control logic must keep a local copy of the
current address pointer and increment it after each
transaction. This counter usually is small; its size
depends on the target's address block size, as
determined by the contents of the Base Address
Registers. If a target agent detects an overflow of
its address space, it should issue a Target
Disconnect, indicating that it is unable to perform
the requested operation. The initiator's response to
a Target Termination depends on the type of
termination. If the initiator receives a Target Retry,
it should simply restart the transaction from the

ADIO[31'O)

REnlSTER »)rQ[31:0)

ClK-ENA

PCI ClK 1'\

Figure 3: Example read/write register

starting address. However, if a Target Disconnect
is detected, the initiator will have to use the current
contents of its address pointer to know where to re­
start the transaction. To complicate manners, the
target can disconnect with or without data, and the
initiator must increment or freeze the address
pointer accordingly.

PERFORMANCE

The maximum theoretical PCI bus bandwidth
is 132 Mbytes/sec. However, actual system
bandwidth varies tremendously from one platform
to another. PCI bus performance is controlled by
three key factors: aggregate bandwidth, data
throughput, and access latency.

The ideal PCI burst write transaction requires
three clock cycles for the first transfer (Idle,
Address, Data) and one clock cycle for each
subsequent transfer, referred to as a 3-1-1-1
sequence. The ideal write transfer needs four clock
cycles for the first transfer (Idle, Address, Turn­
around, Data) and one clock cycle for subsequent
transfers (4-1-1-1).

The LogiCore PCI Interface requires additional
clock cycles to decode the address (referred to as
SLOW decoding in the PCI Specification). Target
burst write transactions do not require any wait
states; thus, the default transfer rate for I/O and
Memory Write transactions is 5-1-1-1. Initiators
add an extra clock cycle at the end of a transaction
to provide reliable disconnection from the bus; the
default rate for initiator reads is 4-1-1-2.

A wait state is added to each transaction when
the LogiCore PCI module is the source of data for a
burst transaction (i.e., initiator writes and target
reads). These wait states are needed to guarantee
compliance with all the PCI bus operating rules.

0+--0+---+---+0-.......-

Figure 4: Effects of the burst read size and latency
on overall PCI bandwidth.

logic. Data to be transferred from the back-end
device can be queued in the FIFO in preparation for
a burst transfer, and data to be transferred to the
back-end device can be placed into the FIFO by a
burst transaction and subsequently processed by the
back-end logic at its own rate.

VERIFICATION AND TESTING

The synchronous, dual-port distributed
memory mode of the XC4000E and XC4000EX
FPGA architectures is ideal for implementing FIFO
buffers of any desired length and width.' As
shipped, the LogiCore PCI Interface includes an
example user interface - a 16 x 32 read/write burst
FIFO buffer. (This application helped simplify the
PCI compliance testing using the VirtualChips PCI
bus simulation model.) However, the
recommended structure for most designs is a dual
FIFO design, with separate buffers to support bus
read and write operations. FIFO buffers that are 16
double-words deep fit best in the XC4000EIEX
architecture; no performance or density is gained
by making the buffers shallower. FIFOs deeper
than 16 double-words but less than 33 consume
more logic blocks but do not add delay. FIFOs
deeper than 32 double-words would consume more
logic and delay.

The LogiCore PCI Interface has been fully
verified using the Synopsys VSS VHDL and
Viewlogic ViewSim logic simulators. Protocol
compliance was tested according to the PCI
Compliance Checklist, Revision 2.0b, published by
the PCI-SIG. Both the VirtualChips VHDL PCI
bus simulation model and an internally developed
test suite were employed. Several tests were added
to test functions not covered by the PCI-SIG
checklist, such as target agent responses to various
termination conditions. The test results are
summarized in the Xilinx LogiCore PCI Interface
Protocol Checklist (v2.1). The design also was
verified via actual FPGA device implementations at
multiple "beta site" accounts.

Users are encouraged to perform a functional
simulation after selecting the custom options in the
PCI LogiCore module and integrating the back-end
logic with the LogiCore module. After running the
"place and route" software that determines the
physical implementation of the design in the FPGA
device, the Xilinx XDelay static timing analyzer
and/or a timing simulator should be used to verify
performance along all critical paths. A PCI

322 4 8 16
Double-Word Burst Size

•

1

Ideal PCI Write 1------,
- ••-Ideal PCI Read
- ••-Initiator Write
-.'-Initiator Read
- • • Target Write
- e • Target Read

1

¥1

~ 1
~
.0
!. 80-t---~~-F-;;,,.-------t

oS
~ 60 -l-7~~~:--!!!!!.e~_~-==~
~ -
~ 40 h~""::=-::-"Il-.:o- ---I
C
£!!
~ 20 'F-----------~

Figure 4 compares the maximum data transfer
rates for ideal PCI read and write operations and
LogiCore PCI initiator and target transactions.

As can be seen in Figure 4, the bandwidth of
the PCI bus is primarily determined by the size of
the burst transfer. Thus, most PCI designs include
a FIFO buffer between the LogiCore module and
the back-end logic. This buffer isolates the speed
of the PCI bus from the operation of the back-end

For example, suppose the LogiCore PCI Interface is
incorporated in a target agent. When an initiator
reads from that target, the initiator can de-assert
IRDY- before a clock edge to indicate that it is not
ready for the next data transfer (that is, an initiator­
generated wait state). The current implementation
of the LogiCore macro cannot respond to this
within the available 7 ns. Therefore, when the
LogiCore PCI target macro is the source of data in
a burst read transaction, it always adds a wait state
to each read transaction to allow ample time to
check the initiator's IRDY- signal. Hence, the
default rate for target I/O and Memory Read
transactions is 6-2-2-2. In systems where an
initiator never generates wait states, the design
could be modified to support 6-1-1-1 read transfers.
Similarly, the default rate for LogiCore initiator
burst writes is 3-2-2-2. (Wait states are never
added to single data transfers.)

Protocol Testbench for the Viewlogic ViewSim
simulator is provided with the LogiCore module to
facilitate user testing of the completed design.

SUMMARY

The LogiCore PCI Interface provides a high­
quality foundation design for the development of
FPGA-based PCI card solutions. Use of this
module minimizes the engineering effort required
to develop a PCI interface, reduces design risk. and
allows designers to focus on the important system­
level aspects of the design.

However, the availability of such modules
should not be viewed as a panacea. PCI bus
interfaces are challenging in any technology. and
especially so in FPGA devices. The degree of
difficulty is influenced by the maximum system
clock frequency, whether a target-only or
initiator/target is needed, and whether the
application supports burst data transfers. A 33
MHz, fully-compliant initiator/target design should
only be attempted by experienced users willing to

invest the extra effort to obtain maximum
bandwidth.

REFERENCES

1. PCI Local Bus Specification rev. 2.1. published
by the PCI Special Interest Group

2. T. Shanly and D. Anderson, PCI System
Architecture, ISBN 1-881609-08-1, Mindshare
Press, Richardson, TX

3. E. Solari and G. Willse, pC! Hardware and
Software Architecture and Design, ISBN 0-929392­
19-1, Annabooks,
San Diego, CA

4. LogiCore pC! Master and Slave Interface
User's Guide, Xilinx Inc. PIN 0401561-01, Aug.
1996

5. Implementing FlFOs in the XC4000E, Xilinx
Inc. application note, PIN 0010273-01

	ABSTRACT
	CORE-BASED DESIGN
	THE LOGICORE PCI INTERFACE
	CUSTOMIZING THE LOGICORE PCI INTERFACE
	BUILDING TARGET AND INITIATOR INTERFACES
	SUPPORTING BURST TRANSACTIONS
	PERFORMANCE
	VERIFICATION AND TESTING
	SUMMARY
	REFERENCES

