

DESIGN APPLICATIONS
WHEN DESIGNING STATE MACHINES, A TECHNIQUE
CALLED ONE-HoT ENCODING CREATES EFFICIENT
CIRCUITS FOR TOP-PERFORMING FPGA MACROS.

ACCELERATE FPGA MACROS
WITH ONE-HoT ApPROACH

tate machines-one of the most commonly im­
plemented functions with programmable log­
ic-are employed in various digital applica­
tions, particularly controllers. However, the
limited number of flip-flops and the wide com­
binatorial logic of a PAL device favors state

machines that are based on a highly encoded state sequence. For example,
each state within a 16-state machine would be encoded using four flip-flops
as the binary values between 0000 and 1111.

A more flexible scheme----ealled one-hot encoding (OHE)---employs one flip­
flop per state for building state machines. Although it can be used with PAL-type
programmable-logic devices (PLDs), OHE is better suited for use with the fan-in
limited and flip-flop-rich architectures of the higher-gate-count field-programma­
ble gate arrays (FPGAs), such as offered by Xilinx, Actel, and others. This is be­
cause OHE requires a larger number of flip-flops. It offers a simple and easy-to­
use method of generating performance-optimized state-machine designs because
there are few levels of logic between flip-flops.

A state machine implemented with a highly encoded state sequence will

E

STEVEN K. KNAPP
Xilinx Inc., 2100 Logic Dr.,
San Jose, CA 95124;
(408) 879-5172.

11. HERE, ATYPICAL STATE MACHINE BUBBLE diagram shows the
operation of a seven-state state machine that reacts to inputs Athrough Eas well as
previous-state conditions.

IlifiiH,"'QQ'irl1iiilJ:hj

STATE MACHINE
DESIGN

many-input logic function in one lev­
el of logic, an FPGA might require
multiple logic layers due to the limit­
ed number of inputs.

The OHE scheme is named so be­
cause only one state flip-flop is as­
serted, or "hot," at a time. Using the
one-hot-encoding method for FPGAs
was originally conceived by High­
Gate Design-a Saratoga, Calif.­
based consulting firm specializing in
FPGA designs.

The OHE state machine's basic
structure is simple-first assign an
individual flip-flop to each state, and
then permit only one state to be ac­
tive at any time. A state machine
with 16 states would require 16 flip­
flops using the OHE approach; a
highly encoded state machine would
need just 4 flip-flops. At first glance,
OHE may seem counter-intuitive.
For designers accustomed to using
PLDs, more flip-flops typically indi­
cates either using a larger PLD or
even multiple devices.

In an FPGA, however, OHE yields
a state machine that generally re­
quires fewer resources and has high­
er performance than a binary-en­
coded implementation. OHE has def­
inite advantages for FPGA designs
because it exploits the strengths of
the FPGA architecture. It usually re­
quires two or less levels of logic be­
tween clock edges than binary en­
coding. That translates into faster
operation. Logic circuits are also
simplified because OHE removes
much of the state-decoding logic-a
one-hot-encoded state machine is al­
ready fully decoded.

OHE requires only one input to de­
code a state, making the next-state
logic simple and well-suited to the
limited fan-in architecture' of
FPGAs. In addition, the resulting
collection of flip-flops is similar to a
shift-register-like structure, which
can placed and routed efficiently in­
side an FPGA device. The speed of an
OHE state machine remains fairly
constant even as the number of
states grows. In contrast, a highly
encoded state machine's perfor­
mance drops as the states grow be­
cause of the wider and deeper decod­
ing logic that's required.

To build the next-state logic for

Copyright 1990 Penton Publishing, Inc.

Slale 1
I
I
I

I IL ..J

as for small state machines. It's up to
the designer to evaluate all ap­
proaches before settling on one for a
particular application.

FPGAs are high-density program­
mable chips that contain a large ar­
ray of user-configurable logic blocks
surrounded by user-programmable
interconnects. Generally, the logic
blocks in an FPGA have a limited
number of inputs. The logic block in
the Xilinx XG-3000 series, for in­
stance, can implement any function
of five or less inputs. In contrast, a
PAL macrocell is fed by each input to
the chip and all of the flip-flops. This
difference in logic structure be­
tween PALs and FPGAs is impor­
tant for functions with many inputs:
Where a PAL could implement a

ANO·2

Slale 7

2. INVERTERS ARE REQUIRED at the Dinput and the Qoutput of the state
flip-flop to ensure that it powers on in the proper state. Combinatorial logic decodes the
operations based on the input conditions and the state feedback signals. The flip-flop will
remain in State 1as long as the conditional paths out of the state are not valid.

A
C
B

Slale 1 0 Q Slale4

OR·1
Slale2 Clock
0 RO

ANO-4
Slale3

A Resel

0

~----------,

B I
C I

generally have many, wide-input log­
ic functions to interpret the inputs
and decode the states. Furthermore,
incorporating a highly encoded state
machine in an FPGA requires sever­
allevels of logic between clock edges
because multiple logic blocks will be
needed for decoding the states. A
better way to implement state ma­
chines in FPGAs is to match the
state-machine architecture to the de­
vice architecture.

LIMITING FAN·IN
A good state-machine approach

for FPGAs limits the amount of fan­
in into one logic block. While the one­
hot method is best for most FPGA
applications, binary encoding is still
more efficient in certain cases, such

13. OF THE SEVEN STATES, the state-transition logic required for State 4 is the
most complex, requiring inputs from three other state outputs as well as four of the five
condition signals (A· Dj.

Reprinted with permission from ELECTRONIC DESIGN - september 13.1990

1,lfi1rl:l,jijijllij,'il,llhj

STATE MACHINE
DESIGN

4. ONLY AFEW GATES are required by States 2and 3 to form simple state­
transition logic decoding. Just two gates are needed by State 2 (top), while four simple gates
are used by State 3 (bottom).

SIale2Q

QI-.......,:S:.::la:,:::le.=.3

Clock

coded design had three. For other
applications, the results can be far
more dramatic. In many cases, the
one-hot method yields a state ma­
chine with one layer of logic between
clock edges. With one layer of logic,
a one-hot state machine can operate
at 50 to 60 MHz.

The initial or power-on condition in
a state machine must be examined
carefully. At power-on, a state ma­
chine should always enter an initial,
known state. For the Xilinx FPGA
family, all flip-flops are reset at pow­
er-on automatically. To assert an ini­
tial state at power-on, the output
from the initial-state flip-flop is in­
verted. To maintain logical consis­
tency, the input to flip-flop also is in­
verted.

All other states use a standard, D­
type flip-flop with an asynchronous
reset input. The purpose of the asyn­
chronous reset input will be dis­
cussed later when illegal states are
covered.

Once the start-up conditions are
set up, the next-state transition logic
can be configured. To do that, first
examine an individual state. Then

}----IO
r-----/..___"

,.---L-.J----;0

A

o

o

SIale2

A

Slale 1

faster (see the table). Intuitively, the
one-hot method might seem to em­
ploy many more logic blocks than the
highly encoded approach. But the
highly encoded state machine needs
more combinatorial logic to decode
the encoded state values.

The OHE approach produces a
state machine with a shift-register
structure that almost always outper­
forms a highly encoded state ma­
chine in FPGAs. The one-state de­
sign had only two layers of logic be­
tween flip-flops, while the highly en-

OHE state machines is simple, lend­
ing itself to a "cookbook" approach.
At first glance, designers familiar
with PAL-type devices may be con­
cerned by the number of potential il­
legal states due to the sparse state
encoding. This issue, to be discussed
later, can be solved easily.

A typical, simple state machine
might contain seven distinct states
that can be described with the com­
monly used circle-and-arc bubble dia­
grams (Fig. 1). The label above the
line in each "bubble" is the state's
name, the labels below the line are
the outputs asserted while the state
is active. In the example, there are
seven states labeled State 1-7. The
"arcs" that feed back into the same
state are the default paths. These
will be true only if no other condition­
al paths are true.

Each conditional path is labeled
with the appropriate logical condi­
tion that must exist before moving to
the next state. All of the logic inputs
are labeled as variables A through E.
The outputs from the state machine
are called Single, Multi, and Contig.
For this example, State 1, which
must be asserted at power-on, has a
doubly-inverted flip-flop structure
(shaded region ofFig. 2).

The state machine in the example
was built twice, once using OHE and
again with the highly encoded ap­
proach employed in most PAL de­
signs. A Xilinx XC3020-100 2000-gate
FPGA was the target for both imple­
mentations. Though the OHE circuit
required slightly more logic than the
highly-encoded state machine, the
one-hot state machine operated 17ro

15. LOOKING NEARLY THE SAME as a simple shift register, the logic for
States 5, 6, and 7is very simple. This is because the OnE scheme eliminates almost all
decoding logic that precedes each nip-flop.

IllfiIH:'·'QA'jq·jil,J:f\j

STATE MACHINE
DESIGN

OUTPUT DEFINITIONS
After defining all of the state tran­

sition logic, the next step is to define
the output logic. The three output
signals-Single, Multi, and Contig­
each fall into one of three primary
output types:

1. Outputs asserted during one
state, which is the simplest case. The
output signal Single, asserted only
during State 6, is an example. ,

2. Outputs asserted during multi­
ple, contiguous states. This appears
simple at first glance, but a few tech­
niques exist that reduce logic com­
plexity. One example is Contig. It's

asserted from State 3 to
State 7, even though there's
a branch at State 2.

3. Outputs asserted dur­
ing multiple, non-contigu­
ous states. The best solution
is usually brute-force decod­
ing of the active states. One

leading away from State 4 is
valid whenever the product,
A*B*C, is true. Consequent­
ly, State 4 must be ANDed
with the inverse of the prod­
uct, A*B*C. In other words,
"keep loading the flip-flop
with a high until a valid
transfer to the next state oc­
curs." The default path log­
ic uses AND-7 and shares
the output of AND-6.

Configuring the logic to
handle the remaining states

is very simple. State 2, for example,
has only one conditional path, which
comes from State 1 whenever the
product A*B*C is true. However, the
state machine will immediately
branch in one of two ways from State
2, depending on the value of D.
There's no default logic to remain in
State 2 (Fig. 4, top). State 3, like
States 1 and 4, has a default state,
and combines the A, D, State 2, and
State-3 feedback to control the flip­
flop's D input (Fig. 4, bottom).

State 5 feeds State 6 uncondition­
ally. Note that the state machine
waits until variable E is low in State 6
before proceeding to State 7. Again,
while in State 7, the state machine
waits for variable E to return to true
before moving to State 1 (Fig. 5).

logic to perform this function is im­
plemented in the gate labeled AND-3
and the logic elements that feed into
the inverting input of A D-3 (Fig. 2,
again).

State 4 is the most complex state in
the state-machine example. Howev­
er, creating the logic for its next­
state control follows the same basic
method as described earlier. To be­
gin with, State 4 isn't the initial state,
so it uses a normal D-type flip-flop
without the inverters. It does, how­
ever, have an asynchronous reset in­
put, three paths into the state, and a
default condition that stays in State
4. Therefore, a four-input OR-gate
feeds the flip-flop (OR-1 in Fig. 3).

The first conditional path comes
from State 3. Following the methods
established earlier, an AND of State
3and the conditional logic, which is A
ORed with D, must be implemented
(AND-2 and OR-3 in Fig. 3). The
next conditional path is from State 2,
which requires an AND of State 2
and variable D (AND-4 in Fig. 3).
Lastly, the final conditional path
leading into State 4 is from State 1.
Again, the State-l output must be
ANDed with its conditional path lo~

ic-the logical product, A*B*C
(AND-5 and AND-6 in Fig. 3).

Now, all that must be done is to
build the logic that remains in State 4
when none of the conditional paths
away from State 4 are true. The path

State 2 S Q
Contig

State 7
E I

,
R./

Clock >

ONE-STATE VS.
BINARY ENCODING METHODS

Number of Worst·case
Method logic blocks performance

One-hot 7.5 40 MHz

Binary encoding 7.0 34 MHz

1
6. S-R FLIp·FLOPS OFFER ANOTHER
approach to decoding the Contig output. They can also save
logic blocks, especially when an output is asserted for a long
sequence of contiguous states.

count the number of condi-
tional paths leading into the
state and add an extra path
if the default condition is to
remain in the same state.
Second, build an OR-gate
with the number of inputs
equal to the number of con­
ditional paths that were de­
termined in the first step.

Third, for each input of
the OR-gate, build an AND­
gate of the previous state
and its conditional logic. Fi­
nally, if the default should remain in
the same state, build an AND-gate of
the present state and the inverse of
all possible conditional paths leav­
ing the present state.

To determine the number of condi­
tional paths feeding State 1, examine
the state diagram-State 1 has one
path from State 7 whenever the vari­
able E is true. Another path is the
default condition, which stays in
State 1. As a result, there are two
conditional paths feeding State 1.
Next, build a 2-input OR-gate-one
input for the conditional path from
State 7, the other for the default path
to stay in State 1 (shown as OR-1 in
Fig. 2).

The next step is to build the condi­
tional logic feeding the OR-gate.
Each input into the OR-gate is the
logical AND of the previous state
and its conditional logic feeding into
State 1. State 7, for example, feeds
State 1 whenever E is true and is im­
plemented using the gate called
AND-2 (Fig. 2, again). The second in­
put into the OR-gate is the default
transition that's to remain in State 1.
In other words, if the current state is
State 1, and no conditional paths
leaving State 1 are valid, then the
state machine should remain in State
1. Note in the state diagram that two
conditional paths are leaving State 1
(Fig. 1, again).

The first path is valid whenever
(A*B*C) is true, which leads
into State 2. The second path
is valid whenever (A*B*C)is
true, leading into State 4. To
build the default logic, State
1 is ANDed with the inverse
of all of the conditional
paths leaving State 1. The

such example is Multi, which is as­
serted during State 2 and State 4.

OHE makes defining outputs
easy. In many cases, the state flip­
flop is the output. For example, the
SingIe output also is the flip-flop out­
put for State 6; no additional logic is
required. The Contig output is as­
serted throughout States 3 through
7. Though the paths between these
states may vary, the state machine
will always traverse from State 2 to a
point where Contig is active in either
State 3 or State 4.

There are many ways to imple­
ment the output logic for the Contig
output. The easiest method is to de­
code States 3, 4, 5, 6, and 7 with a 5­
input OR gate. Any time the state
machine is in one of these states,
Contig will be active. Simple decod­
ing works best for this state machine
example. Decoding five states won't
exceed the input capability of the
FPGA logic block.

ADDITIONAL LOGIC
However, when an output must be

asserted over a longer sequence of
states (six or more), additional layers
of decoding logic would be required.
Those additional logic layers reduce
the state machine's performance.

Employing S-R flip-flops gives de­
signers another option when decod-

. ing outputs over multiple, contigu­
ous states. Though the basic FPGA
architecture may not have physical
S-R flip-flops, most macrocelllibrar­
ies contain one built from logic and
D-type flip-flops. Using S-R flip­
flops is especially valuable when an
output is active for six or more con­
tiguous states.

The S-R flip-flop is set when enter­
ing the contiguous states, and reset
when leaving. It usually requires ex­
tra logic to look at the state just prior
to the beginning and ending state.
This approach is handy when an out­
put covers multiple, non-contiguous
states, assuming there are enough
logic savings to justify its use.

In the example, States 3 through 7
can be considered contiguous. Con­
tig is set after leaving State 2 for ei­
ther States 3 or 4, and is reset after
leaving State 7 for State 1. There are
no conditional jumps to states where

IIIfi IA:','QQIIHI' IIII:~'

STATE MACHINE
DESIGN

Contig isn't asserted as it traverses
from State 3 or 4 to State 7. Other­
wise, these states would not be con­
tiguous for the Contig output.

The Contig output logic, built from
an S-R flip-flop, will be set with State
2 and reset when leaving State 7
(Fig. 6). As an added benefit, the
Contig output is synchronized to the
master clock. Obvious logic reduc­
tion techniques shouldn't be over­
looked either. For example, the Con­
tig output is active in all states ex­
cept for States 1 and 2. Decoding the
states where Contig isn't true, and
then asserting the inverse, is anoth­
er way to specify Contig.

The Multi output is asserted dur­
ing multiple, non-contiguous
states-exclusively during States 2
and 4. Though States 2 and 4 are con­
tiguous in some cases, the state ma­
chine may traverse from State 2 to
State 4 via State 3, where the Multi
output is unasserted. Simple decod­
ing of the active states is generally
best for non-contiguous states. If the
output is active during multiple, non­
contiguous states over long se­
quences, the S-R flip-flop approach
described earlier may be useful.

One common issue in state-ma­
chine construction deals with pre­
venting illegal states from corrupt­
ing system operation. Illegal states
exist in areas where the state ma­
chine's functionality is undefined or
invalid. For state machines imple­
mented in PAL devices, the state-ma­
chine compiler software usually gen­
erates logic to prevent or to recover
from illegal conditions.

In the OHE approach, an illegal
condition will occur whenever two or
more states are active simultaneous­
ly. By definition, the one-hot method
makes it possible for the state ma­
chine to be in only one state at a time.
The logic must either prevent multi­
ple, simultaneous states or avoid the
situation entirely.

Synchronizing all of the state-ma­
chine inputs to the master clock sig­
nal is one way to prevent illegal
states. "Strange" transitions won't
occur when an asynchronous input
changes too closely to a clock edge.
Though extra synchronization
would be costly in PAL devices, the

flip-flop-rich architecture of an
FPGA is ideal.

Even off-chip inputs can be syn­
chronized in the available input flip­
flops. And internal signals can be
synchronized using the logic block's
flip-flops (in the case of the Xilinx
LCAs). The extra synchronization
logic is free, especially in the Xilinx
FPGA family where every block has
an optional flip-flop in the logic path.

RESETTING STATE BITS
Resetting the state machine to a

legal state, either periodically or
when an illegal state is detected,
gives designers yet another choice.
The Reset Direct (RD) inputs to the
flip-flops are useful in this case. Be­
cause only one state bit should be set
at any time, the output of a state can
reset other state bits. For example,
State 4 can reset State 3.

If the state machine did fall into an
illegal condition, eventually State 4
would be asserted, clearing State 3.
However, State 4 can't be used to re­
set State 5, otherwise the state ma­
chine won't operate correctly. To be
specific, it will never transfer to
State 5; it will always be held reset by
State 4. Likewise, State 3 can reset
State 2, State 5 can reset State 4,
etc.-as long as one state doesn't re­
set a state that it feeds.

This technique guarantees a peri­
odic, valid condition for the state ma­
chine with little additional overhead.

otice, however, that State 1 is nev­
er reset. If State 1 were "reset," it
would force the output of State 1
high, causing two states to be active
simultaneously (which, by defini­
tion, is illegal). 0

Steve Knapp, new product develop­
ment manager at Xilinx, spent the
last four years as a field applica­
tions engineer aiding customers in
FPGA designs. He received a BS in
materials science and engineering
from Massachusetts Institute of
Technology, Cambridge, Mass.

	Introduction
	Limiting Fan-In

	Output Definitions
	Additional Logic
	Resetting State Bits

