
®

November 1, 1996 (Version 1.1) LC-DI-PCIM-C and LC-DI-PCIS-C

© 1996 Xilinx, Inc. PN: 0401561-01

LogiCore™ PCI Master and
Slave Interface User's Guide

Table of Contents
1. Introduction ... 1

2. Getting Started .. 3

3. Design Methodology ... 3

4. LogiCore PCI Interface Operation............................ 4

5. Signal Descriptions... 5

6. Building a Complete PCI Design............................ 17

7. Customizing the LogiCore PCI Interface............... 18

8. General Design Guidelines..................................... 25

9. Target Data Transfers and Control 28

10. Initiator Data Transfers and Control.................... 29

11. Data Flow Control Signals.................................... 30

12. Target-Initiated Terminations............................... 30

13. Automatic Wait-State Insertion 31

14. Handling Burst Transfers 32

15. Tips for Building an Initiator Controller 35

16. Controlling Initiator Transactions........................ 36

17. Design Validation Process 38

18. Compliance Process ... 43

19. Appendix A: Pinout, Configuration 44

20. Appendix B: Resources....................................... 47

21. Appendix C: Waveforms...................................... 49

LogiCore Facts
LC-DI-PCIM-C, LC-DI-PCIS-C

Recommended Experience Level
FPGA Design1 Moderate to Advanced
PCI Protocol and Design Moderate to Advanced

Resources Required
Packed CLBs 152
Occupied CLBs 268
IOBs 53+

Performance
System clock fmax 0-33 MHz

Supported Devices % Utilized 2

Master: XC4013E-1PQ208C 26%/47%
Slave: XC4013E-2PQ208C

Design files
Schematics VIEWlogic
Netlist XNF
VHDL Instantiate XNF netlist
Verilog Instantiate XNF netlist

Verification
VHDL model Generated by user
Verilog Generated by user
Testbench VIEWsim Command Files

Required Core Tools XACTstep 5.2.1/6.0.1 or later

SUPPORT: XILINX WILL PROVIDE TECHNICAL SUPPORT FOR
THIS LOGICORE™ PCI PRODUCT WHEN USED AS DESCRIBED
IN THIS USER’S GUIDE OR SUPPORTING APPLICATION NOTES.
XILINX CANNOT GUARANTEE TIMING, FUNCTIONALITY, OR
SUPPORT OF THIS LOGICORE™ PCI PRODUCT IF IMPLE-
MENTED IN DEVICES NOT LISTED ABOVE, OR CUSTOMIZED
BEYOND THAT REFERENCED IN THIS USER’S GUIDE, OR IF ANY
CHANGES ARE DONE IN SECTIONS OF THE DESIGN MARKED
AS “DO NOT MODIFY”.
Notes
1 Experience building high-performance, pipelined FPGA designs

using Xilinx software, Floorplanner, TIMESPECs and guide files
recommended.

2 Packed CLBs/Occupied CLBs

http://www.xilinx.com
http://www.pcisig.com
http://www.xilinx.com/products/logicore/docs/lchdl.pdf
http://www.xilinx.com/products/fpgaspec.htm#XC4000
http://www.xilinx.com/support/support.htm
http://www.xilinx.com/userguid.pdf
Get the Latest Version
Unless you just downloaded this Acrobat document from the Xilinx web site, there may be a newer version. Click on the title at the left to download the latest version via the World Wide Web.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C INTENTIONALLY LEFT BLANK

1 LC-DI-PCIM-C/LC-DI-PCIS-C

1. Introduction

This design guide describes how to use the Xilinx LC-DI-
PCIM-C LogiCore PCI Master interface and the Xilinx LC-
DI-PCIS-C LogiCore PCI Slave interface products. Each
Xilinx LogiCore PCI Interface is a fully-integrated, tested,
and validated schematic-based PCI Local Bus interface
design. The module enables faster implementation of
production and prototype FPGA-based PCI applications.
The LogiCore PCI Interface is:

n Verified for PCI local bus, revision 2.1, protocol and
timing compliance.

n Optimized and pre-placed module for XC4013E
FPGA.

n A general-purpose design that can be customized for
specific interface requirements by the user and inte-
grated with additional logic.

n Pre-implemented for faster time-to-volume and re-
duced engineering risk.

The LogiCore PCI Interface provides a high-quality foun-
dation design. The module minimizes the engineering
effort required to develop a PCI host interface—saving
months of development time. This reduces risk and al-
lows more time to focus on important system-level as-
pects of the design.

1.1 Overview

The LogiCore PCI Interface is a PCI interface building
block created for an XC4013E FPGA device. The de-
tailed schematics form the core PCI interface design.
Further customization by the user tailors the design for
specific board-level design requirements. Combining a
custom user-interface with a fully-tested PCI interface
produces a single-chip PCI I/O adapter.

The LogiCore PCI Interface is optimized for both the
XC4000E FPGA architecture and for the XACTstep ver-
sion 6.0.1/5.2.1 software design flow. Placement con-
straints, XACT-Performance timing constraints, and a
placement guide file guarantee PCI timing requirements.

1.2 PCI 2.1 Compliance

The LogiCore PCI Interfaces have been extensively veri-
fied using the VirtualChips VHDL PCI bus simulation
model and a Xilinx-created VIEWsim PCI protocol test-
bench. Both models verify the PCI interface functions
according to the test scenarios specified in the PCI Pro-
tocol Compliance Checklist published by the PCI Spe-
cial Interest Group (PCI-SIG). The PCI test suite consists
of 27 test scenarios, each designed to test compliance of
a specific PCI bus protocol. Refer to LogiCore PCI In-
terface Protocol Checklist for a complete list of Xilinx
test scenarios, which includes some tests beyond those
specified in the PCI-SIG’s checklist.

IMPORTANT!

!

Due to the complexity of the PCI inter-
face, Xilinx can only guarantee PCI
compliance of the LogiCore PCI Inter-
face, as provided, and cannot provide
any guarantees for user designs.

1.3 LogiCore PCI Interface Features

n Complete 32-bit PCI Interface

n PCI Local Bus Compliant - Revision 2.1

n Target-Only (Slave) or Target/Initiator (Master) PCI
support

n 100% programmable single-chip solution

PARITY
GENERATOR/

CHECKER

BASE
ADDRESS
REGISTER

0

BASE
ADDRESS
REGISTER

1

COMMAND/
STATUS

REGISTER

INTERRUPT
PIN and

LINE
REGISTER

LATENCY
TIMER

REGISTER

VENDOR ID,
REV ID,

OTHER USER
DATA

TARGET
STATE

MACHINE

PAR

PERR-

SERR-

TRDY-

DEVSEL-

STOP-

INITIATOR
STATE

MACHINE

FRAME-

IRDY-

AD[31:0]
ADIO[31:0]

Configuration Space

P
C

I I
/O

 IN
TE

R
FA

C
E

REQ-

GNT- U
S

E
R

 A
P

P
LI

C
A

TI
O

N

Figure 1. LogiCore PCI Interface block diagram.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 2

1.3.1 Initiator Functions (available in LC-DI-PCIM-C
only)

n Initiate Memory Read, Memory Write, Memory Read
Multiple (MRM), and Memory Read Line (MRL) com-
mands

n Initiate I/O Read and I/O Write commands

n Initiate Configuration Read and Configuration Write
commands

n Bus Parking

1.3.2 Target Functions (available in both LC-DI-PCIM-
C and LC-DI-PCIS-C products)

n Type 0 Configuration Space Header

n Up to 2 Base Address Registers (memory or I/O with
adjustable block sizes from 16 bytes to 256 Mbytes,
slow decode speed)

n Parity Generation (PAR) and Parity Error Detection
(PERR# and SERR#)

n Memory Read, Memory Write, Memory Read Multiple
(MRM), Memory Read Line (MRL), and Memory Write
and Invalidate (MWI) command support

n I/O Read and I/O Write command support

n Configuration Read and Configuration Write com-
mand support

n 32-bit data transfers, burst transfers with linear ad-
dress ordering

n Target Abort support

n Target Retry and Target Disconnect support

n Full Command/Status Register support

1.4 Functional Blocks

The LogiCore PCI Interface is partitioned into five major
blocks, plus the user application, as shown in Figure 1.
These functional blocks include:

1. PCI I/O Interface

2. Parity Generator/Checker

3. Target State Machine

4. Initiator State Machine

5. Configuration Space

1.4.1 PCI I/O Interface Block

The I/O interface block handles the physical connection
to the PCI bus including all signaling, input and output
synchronization, output three-state controls, and all re-
quest/grant handshaking for bus mastering.

1.4.2 Parity Generator/Checker

Generates/checks even parity across the AD bus, the
CBE lines, and the PAR signal. Reports data parity er-
rors via PERR- and address parity errors via SERR-.

1.4.3 Target State Machine

This block manages control over the PCI interface for
Target operations. The states implemented are a subset
of equations defined in “Appendix B” of the PCI Local
Bus Specification . The controller is a high-performance
state machine using state-per-bit encoding. State-per-bit
encoding has narrower and shallower next-state logic
functions that more closely match the Xilinx FPGA archi-
tecture.

1.4.4 Initiator State Machine (LC-DI-PCIM only)

This block manages control over the PCI interface for
Initiator operations. The states implemented are a sub-
set of equations defined in “Appendix B” of the PCI Local
Bus Specification . The Initiator Control Logic also uses
state-per-bit encoding for maximum performance.

1.4.5 PCI Configuration Space

This block provides the first 64 bytes of Type 0, version
2.1, Configuration Space Header (CSH) to support soft-
ware-driven “Plug-and Play” initialization and configura-
tion. This includes Command, Status, Latency Timer,
Interrupt Pin, Interrupt Line, and two Base Address Regis-
ters (BARs), as shown in Figure 1. These BARs illustrate
how to implement memory- or I/O-mapped address
spaces. Each BAR sets the base address for the inter-
face and allows the system software to determine the
addressable range required by the interface. Using a
combination of Configurable Logic Block (CLB) flip-flops
for the read/write registers and CLB look-up tables for the
read-only registers results in optimized packing density
and layout.

1.4.6 User Application and Burst FIFOs

The LogiCore PCI Interface provides a simple, general-
purpose interface with a 32-bit data path and latched ad-
dress for de-multiplexing the PCI address/data bus. The
general-purpose user interface allows the rest of the de-
vice to be used in a wide range of custom interface appli-
cations requiring programmable logic.

Typically, the user application contains burst FIFOs to
increase PCI system performance. PCI derives its per-
formance from its ability to support burst transfers. The
performance of any PCI application depends largely on
the burst transfer capability of the interface device. Inte-
grated read/write FIFOs, built from the on-chip synchro-
nous RAM available in XC4000E devices, support data
transfers in excess of 33 MHz.

3 LC-DI-PCIM-C/LC-DI-PCIS-C

2. Getting Started

This document and the LogiCore PCI macro assume that
the reader has

n A thorough understanding of the PCI Local Bus

n Previous Xilinx FPGA design experience, specifically
with the larger members of the XC4000 FPGA family.
Prior experience with XACT–Performance™ and the
Floorplanner software is beneficial.

n Experience building high-performance, heavily-
pipelined designs.

Xilinx strongly recommends that those unfamiliar with PCI
obtain a copy of the PCI Local Bus Specification and
read the reference book called PCI System Architec-
ture , included with the product, before using this Logi-
Core design. PCI is a fairly demanding, high-
performance application. Users that have never done a
Xilinx design before should allow sufficient time to learn
the Xilinx design environment.

To start a design using the LogiCore PCI Interface, you
will need:

n PCI Local Bus Specification , Revision 2.1, dated
June 1, 1995 or later.

n VIEWlogic schematic entry and simulation software.

n VIEWlogic libraries for the Xilinx XC4000E FPGA fam-
ily.

n Xilinx XACTstep version 6.0.1/5.2.1 or later software
supporting the XC4000E FPGA family.

n Optional Perl (version 5.0) software (available via the
World-Wide Web, see section 20.6) to run selected
utilities.

n Optional Adobe Acrobat software to view on-line
documentation available on the CD-ROM. Adobe Ac-
robat is included with the Xilinx XACTstep software.

n A workstation or a 100-MHz or faster Pentium™ PC
with at least 32 Mbytes of RAM and 10 Mbytes of
available disk space to hold the design and verifica-
tion files.

3. Design Methodology

The LogiCore PCI Interfaces are highly optimized with
floorplanned layout for the XC4013E FPGA device.
Relative placement constraints (RLOCs) provide easy
implementation of the PCI interface. Pre-placed and pre-
routed guide files guarantee timing performance on criti-
cal control signals like IRDY-, TRDY-, and FRAME-.

As in ASIC devices, FPGAs benefit from floorplanning,
especially for designs like the LogiCore PCI Interfaces.
These placement attributes help the Partition, Place and
Route (PPR) tools to quickly achieve optimal routing re-
sults.

The user connects the LogiCore PCI Interface to other
modules to complete the design. For example, to com-
plete a PCI adapter card interface using the XC4013E, a
designer could create a single-page schematic with the
Initiator/Target LogiCore PCI Interface component to-
gether with the required user application. Next, the user
compiles the design using the XACTstep software and
the PCI place and route constraints file for the Xilinx
XC4013E-2PQ208C. At this point the design can be
simulated or downloaded to the target device.

The entire schematic describes a generic PCI interface.
If possible, the logic contained in the schematic is
trimmed during the design compilation process. The de-
sign can be used as is or tuned to meet a specific re-
quirement, according to the guidelines described in this
user’s guide.

3.1 Modular Construction

The LogiCore PCI Interface, as provided, only supports
the XC4013E-2PQ208C FPGA device. The Target-Only
and Target/Initiator options require a fixed amount of CLB
resources for the core PCI interface. Table 1 shows the
percentage of free programmable logic space available
after integrating the LogiCore PCI Interface. Note that
the Target-Only (Target) design has more free space
than does the Target/Initiator (Initiator) design. This is
because the Initiator control logic consumes extra re-
sources beyond those used in Target-Only designs.

Table 1. Estimated XC4013E CLB Utilization Chart for
LogiCore PCI Interface Plus 16 x 32 FIFO

Logic % Free CLBs
Device Package I/O Blocks Target Initiator

XC4013E PQ208 160 576 60% 50%
PQ240 192

Only the XC4013E device is supported, as delivered.
Table 2 presents possible alternative, unsupported solu-
tions. None of these options has been verified through
compliance testing.

Table 2. Estimated XC4000E CLB Utilization Chart for
Unsupported Alternative Solutions

(LogiCore PCI Interface Plus 16 x 32 FIFO)
Logic % Free CLBs

Device Package I/O Blocks Target
*

Initiator*

XC4008E TQ144 120 324 40% 30%
PQ160 129
PQ208 144

XC4010E PQ160 129 400 55% 45%
PQ208 160

XC4020E PQ208 160 784 70% 65%
PQ240 193

* Preliminary estimates

3.2 Selecting the Right Speed Grade

Fully-compliant 33 MHz PCI applications require the
XC4000E speed grade shown in Table 3. The XC4013E-
1 is recommended for all Master 33 MHz designs, al-

http://www.pcisig.com/specs.html
http://www.viewlogic.com
http://www.adobe.com/acrobat/readstep.html
http://www.xilinx.com/products/software/software.htm

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 4

though Target applications will be able to use the
XC4013E-2 speed grade.

Table 3. Speed Grade Required for PCI Applications
Bus Speed Slave Master

25 MHz -2 -2
33 MHz -1

4. LogiCore PCI Interface Operation

The LogiCore PCI Interfaces are designed to interface
between the PCI bus and the application interface. An
example design with a PCI interface and a user applica-
tion is shown in the top-level schematic block diagram
(pci_top.1), shown in Figure 2. This example consists
of the LogiCore PCI Interface (pci_lc_i.1). The user
interface provides a complete custom interface to the
user application, userapp.1 . The PCI interface module,
however, needs only minimal customization. The major
address/data bus and a small number of control signals
connect the PCI interface to the user application.

4.1 LogiCore PCI Interface (PCI_LC_I)

This section provides an operational description of the
LogiCore PCI Interface (PCI_LC_I). The important fea-
tures of the PCI-to-User-Interface and User-Interface-to-
PCI transactions are presented in this section.

The PCI LogiCore Interface supports all the basic PCI
functions including:

n Type 0 configuration space support

n I/O read/write functions

n Memory read/write functions

A summary of these basic features as well as enhance-
ments are outlined below.

The Target design incorporates two base address regis-
ters:

n Base Register 0 (BAR0) configured for memory space
with an 8-bit decode (16 Mbyte block)

n Base Register 1 (BAR1) as I/O space with a 28-bit
decode (16 byte block)

These registers may be modified by the user to decode
from 4 to 28 bits of address space, mapped into either
memory or I/O space.

The PCI bus commands are decoded, latched, and avail-
able on the PCI_CMD[15:0] bus from the LogiCore PCI
Interface. The commands supported in the design are
shown in Table 4.

Full parity support for all read/write functions is largely
transparent to the designer. Other embedded PCI control

Figure 2. LogiCore PCI Schematic (pci_top.1).

5 LC-DI-PCIM-C/LC-DI-PCIS-C

functions include command decoding, latching functions,
output enables, and specific PCI state-machine functions.

4.2 Supported PCI Commands

PCI bus commands direct the Target according to the
type of access that the Initiator is requesting. PCI bus
commands are encoded on the CBE[3:0] lines during the
address phase. Table 4 illustrates the PCI bus com-
mands currently supported by the LogiCore PCI Inter-
face.

The LogiCore Target interface can receive and process a
Memory Write and Invalidate. However, the LogiCore
Initiator interface does not support the Memory Write and
Invalidate command because it does not track the cache
line size.

Table 4. PCI Bus Commands
CBE
[3:0] Command

PCI
Master

PCI
Slave

0000 Interrupt Acknowledge No* Ignore
0001 Special Cycle No* Ignore
0010 I/O Read Yes Yes
0011 I/O Write Yes Yes
0100 Reserved Ignore Ignore
0101 Reserved Ignore Ignore
0110 Memory Read Yes Yes
0111 Memory Write Yes Yes
1000 Reserved Ignore Ignore
1001 Reserved Ignore Ignore
1010 Configuration Read Yes Yes
1011 Configuration Write Yes Yes
1100 Memory Read Multiple Yes Yes
1101 Dual Address Cycle No* Ignore
1110 Memory Read Line Yes Yes
1111 Memory Write Invalidate No* Yes

* The Initiator can present these commands. However, they
either require additional user-application logic to support
them or have not been thoroughly tested.

5. Signal Descriptions

The top-level schematic block diagram (pci_top.1),
shown in Figure 2, is a sample of a PCI function and user
application.

The interface signals are grouped into functional sections
with the required PCI bus interface signals on the left-
hand side of the interface symbol and all user interface
signals on the right-hand side of the symbol.

5.1 PCI Bus Interface Signals

Table 5 defines the interface signals that comprise the
PCI Local Bus Interface. Most of the signals are common
to both the PCI Target and PCI Initiator/Target modules.
Pin locations are device and package dependent. See
the appropriate constraint file (*.cst) for specific device
configurations.

5.2 User Interface Signals

The user interface to the LogiCore PCI Interface provides
most of the module’s internal data paths and state ma-
chine control signals. This provides ultimate flexibility for
customized user applications.

Table 6 describes the interface signals available on the
user interface. Most of the signals are common to both
the PCI Target and PCI Initiator/Target modules.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 6

Figure 3. PCI_LC_I interface symbol.

7 LC-DI-PCIM-C/LC-DI-PCIS-C

Table 5. PCI Bus Interface Signals
Signal Name Target Initiator Functional Description

Address/Data
AD[31:0]_IO I/O I/O PCI Address/Data Bus - time-multiplexed address/data bus. Each bus transac-

tion consists of an address phase followed by one or more data phases.

The ADDR_VLD signal follows the address phase on the PCI bus indicating that the
address is now available on the ADIO[31:0] internal bus. During an Initiator
transaction, the back-end application should provide address on the ADIO[31:0]
internal bus when M_ADDR- is asserted Low.

The data phase is indicated by S_DATA during a Target access or by M_DATA dur-
ing an Initiator operation.

CBE[3:0]_IO In I/O PCI Command/Byte Enable - time-multiplexed bus command and byte enables.
Bus commands (shown in Table 4) are asserted during an address phase on the
bus. Byte enables are asserted during data phases.

During a Target access to the LogiCore interface, the CBE[3:0]_IO lines drive the
S_CBE[3:0] lines to the user application. The command presented on
CBE[3:0]_IO is decoded, latched during the address cycle and presented on
PCI_CMD[15:0] . Byte enables are presented during the Target data phases
(S_DATA).

When operating as an Initiator, the user application drives the CBE[3:0] lines using
the M_CBE[3:0] lines on the LogiCore interface. Any command can be pre-
sented, but the user application must be able to support any command that it is-
sues. A list of supported commands is shown in Table 4. The user interface must
provide valid byte enables during the Initiator data phases (M_DATA).

PAR_IO I/O I/O PCI Parity signal - generates/checks even parity across AD[31:0]_IO and
CBE[3:0]_IO.

When the LogiCore macro is the source of the data (Target Read, Initiator Write,
or Initiator address phase), the macro generates even parity across AD[31:0]_IO
and CBE[3:0]_IO and presents the result on PAR_IO one cycle after the values
were presented on AD[31:0]_IO and CBE[3:0]_IO. The LogiCore macro always
supplies PAR_IO when it provides data.

When the LogiCore macro receives data (Target Write, Initiator Read, address
phase presented by another agent), the macro checks for even parity across the
AD[31:0]_IO and CBE[3:0]_IO presented one cycle earlier and the current PAR_IO
input. Parity errors are reported via PERR_IO two cycles after data is presented
and also reported by Detected Parity Error bit in the Status Register (CSR31).

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 8

Signal Name Target Initiator Functional Description
Interface

FRAME_IO In I/O Frame - driven by the bus master to indicate a bus transaction. FRAME_IO is
asserted Low for the duration of the operation and is de-asserted during the last
data cycle to identify the end of the transaction.

When operating as an Initiator, the LogiCore interface will only assert FRAME_IO
after

§ receiving GNT_I and

§ the bus is idle (IRDY_IO and FRAME_IO de-asserted) and

§ the Bus Master Enable bit (CSR2) is set in the Command Register and

§ the user application has a REQUEST pending (though the REQ_O pin need not
§ be asserted).

When operating as an Initiator, the LogiCore interface will de-assert FRAME_IO
after

§ the user application asserts COMPLETE, or

§ receiving a termination from the addressed Target (Target Retry, Target
§ Disconnect, or Target Abort), or

§ not receiving a DEVSEL- from the addressed Target (Master Abort), or

§ the Initiator’s Latency Timer has expired, if enabled, and the system arbiter is
§ no longer asserting GNT_I.

TRDY_IO Out I/O Target Ready - indicates that the target module is ready to complete the current
data phase. When TRDY_IO is asserted Low, the Target is ready to transfer data.

During a Target Read operation, the LogiCore macro automatically inserts one
TRDY- wait-state after each successful data transfer, except the last (see section
13.1). This allows time for the macro to provide new data between transfers.

During a Target transaction, TRDY- is controlled by the READY signal from the user
application and the LogiCore Target state machine.

IRDY_IO In I/O Initiator Ready - indicates that the Initiator of the access is able to complete the
current data phase. When IRDY_IO is asserted Low, the Initiator is ready to
transfer data.

During an Initiator Write operation, the LogiCore macro automatically inserts one
IRDY- wait-state after each successful data transfer, except the last (see section
13.1). This allows time for the macro to provide new pipelined data between
transfers.

The macro also automatically inserts one IRDY- wait-state during an Initiator burst
transfer, before de-asserting FRAME_IO after the user application asserted
COMPLETE and the current data transfer completes (see section 13.2). This extra
wait state is not inserted on single transfers.

During an Initiator transaction, IRDY- is controlled by the READY signal from the
user application and the LogiCore Initiator state machine.

STOP_IO Out I/O Stop - indicates that the Target has requested to stop the current access. The
Target uses STOP_IO to signal a Disconnect (terminate with or without data
transfer after the first transfer), Retry (terminate with no data transfer on the first
transfer), or Target Abort (serious problem, no data transfer).

The TERM signal from the user application directly controls the STOP_IO signal.
When TERM is asserted, STOP_IO will be asserted on the next clock edge if the
macro is involved in a Target access.

9 LC-DI-PCIM-C/LC-DI-PCIS-C

Signal Name Target Initiator Functional Description
DEVSEL_IO Out I/O Device Select - indicates that the Target has decoded the address presented dur-

ing the address phase and it matches one of the Target’s Base Address Registers
(BARs). Address decoding is distributed within the PCI system. Each Target
monitors each address cycle to determine if it is the agent addressed in the current
transaction.

The LogiCore PCI Target responds with a slow decode speed. If the presented
address matches one of the macro’s Base Address Registers, then the LogiCore
asserts DEVSEL_IO Low on the third clock cycle after the first clock cycle where
FRAME_IO is asserted Low.

IDSEL_I In In Initialization Device Select - indicates the LogiCore macro is the target of a con-
figuration operation. IDSEL_I is asserted High while AD[1:0]_IO=‘00’ indicating a
Configuration access.

IDSEL_I is usually resistively coupled to one of the higher-order address lines.
The specific address line will depend on the card slot’s order in the system configu-
ration chain.

LOCK_I In I/O Lock - indicates the Initiator has gained exclusive access to a target. Not Sup-
ported

Interrupts
INTD_O OD OD Interrupt D - indicates the LogiCore PCI Interface requests an interrupt. Not Sup-

ported.
INTC_O OD OD Interrupt C - indicates the LogiCore PCI Interface requests an interrupt. Not Sup-

ported.
INTB_O OD OD Interrupt B - indicates the LogiCore PCI Interface requests an interrupt. Not Sup-

ported.
INTA_O OD OD Interrupt A - indicates the LogiCore PCI Interface requests an interrupt. INTA_O

is an open-drain output and should be driven by a flip-flop. The flip-flop is cleared
by the interrupt handling routing.

Cache (NOT SUPPORTED)
SDONE_I N/A N/A PCI SDONE_I signal. Not Supported.
SBO_I N/A N/A PCI SBO_I signal. Not Supported.

Error Signals
PERR_IO Out I/O Parity Error - indicates the module has detected a parity error as the target of a

write data transfer or the initiator of a read data transfer. Checks for even parity
over the AD[31:0]_IO, CBE[3:0]_IO, and PAR_IO signals. Parity errors are re-
ported two clock cycles after the data transaction appeared on the AD[31:0]_IO
and CBE[3:0]_IO lines.

Parity error reporting on PERR_IO is enabled by setting the Report Parity Errors bit
(CSR6) in the Command Register.

Parity errors, except those during Special Cycles, are always reported in the Status
Register (CSR31). Additionally, an Initiator reports that it has detected a parity er-
ror during a transaction where it was the bus master. The error is reported via the
Data Parity Error Detected bit (CSR24) in the Status Register if the Report Parity
Errors bit (CSR6) is set in the Command Register.

SERR_O OD OD System Error - indicates that a parity error was detected during an address cycle.
SERR_O does not report parity errors during a Special Cycle. SERR_O is as-
serted Low on the third clock after FRAME_IO is first recognized as asserted Low.
System errors are reported on the Signaled System Error bit (CSR30) in the Status
Register if the SERR- Enable bit (CSR8) is set in the Command Register. Open-
drain output.

Arbitration
REQ_O N/A Out Request PCI Bus - indicates to the arbiter that the LogiCore PCI Initiator requests

access to the bus. The Initiator may only request the bus when it has been en-
abled by setting the Bus Master Enable flag as bit 2 in the Command Register
(CSR2). REQ_O is directly controlled by the REQUEST input from the user appli-
cation.

OD = Open-drain output. N/A = Not Applicable.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 10

Signal Name Target Initiator Functional Description
GNT_I N/A In Grant PCI Bus - indicates that the arbiter has granted the bus to the LogiCore PCI

Interface. Once GNT_I is asserted and REQUEST is asserted by the user applica-
tion, the LogiCore macro performs an Initiator transaction under the conditions
specified in the FRAME_IO entry.

If GNT_I is asserted and there is not a pending REQUEST or the Bus Master Enable
bit is not set, then the macro performs Bus Parking (see DR_BUS entry in Table 6).

Boundary Scan (uses XC4000E dedicated boundary scan function)
TDI_I In In Test Data Input - boundary scan serial data input.
TMS_I In In Test Mode Select - boundary scan command input.
TCK_I In In Test Clock - boundary scan clock input.
TDO_O Out Out Test Data Output - boundary scan serial data output.

RST_I In In Global Reset - resets all internal flip-flops and forces all outputs to a high-
impedance state. Uses the dedicated XC4000E global set/reset and global three-
state function. Resets the contents of the Command/Status Register. Disables the
Initiator functionality until the system software sets the Master Enable bit in the
Command Register. Disables memory or I/O Target accesses until the system
software sets the Memory Enable or I/O Enable bits in the Command Register.

CLK In In PCI Clock - input from PCI bus that drives the entire LogiCore module, and syn-
chronous user applications. The frequency of CLK ranges from DC to 33 MHz.
The CLK input must be driven from a primary global clock buffer (BUFGP). The
buffer is not integrated in the macro to allow for easier porting to other Xilinx FPGA
technologies.

N/A = Not Applicable for Target-Only function.

11 LC-DI-PCIM-C/LC-DI-PCIS-C

Table 6. Connections to the User Interface
Signal Name Target Initiator Functional Description

Cycle Control
FRAME- Out Out Frame - driven by the bus master to indicate the start and duration of the

access. FRAME- is captured in an input flip-flop by the PCI clock.

The Initiator only asserts FRAME- on the clock cycle following the condition
where GNT- and REQ- are asserted and FRAME- and IRDY- are de-asserted
on the bus (Bus Idle). Note that the Bus Master Enable bit (CSR2) in Com-
mand Register, must be set before the Initiator can request the bus.

IRDY- Out Out Initiator Ready - driven by the bus master to indicate that it is ready to
transfer data. IRDY- is captured in an input flip-flop by the PCI clock.

TRDY- Out Out Target Ready - driven by the addressed target to indicate that it is ready to
transfer data. TRDY- is captured in an input flip-flop by the PCI clock.

STOP- Out Out Stop Transaction - driven by the addressed target to indicate that it wishes
to terminate the current transaction. Data may or may not be transferred
when STOP- is asserted, depending on whether TRDY- is asserted. STOP-
is captured in an input flip-flop by the PCI clock.

DEVSEL- Out Out Device Selected - driven by the addressed target to indicate that it is the
target of the current transaction. DEVSEL- is captured in an input flip-flop by
the PCI clock.

Bus Control
BASE_HIT[7:0] Out Out Base Address Hit - indicates that one of the Base Address Registers (BARs)

is being addressed. The bus is one-hot encoded as indicated below. The
BASE_HIT signals are active for one clock cycle, the cycle preceding the
S_DATA state (which corresponds to B_BUSY if the address matches). Only
BASE_HIT[1:0] are connected in the design as provided. BASE_HIT0 is
pre-configured as a memory base register, BASE_HIT1 is pre-configured as
an I/O base register. The base registers can be customized for specific ap-
plications as described in sections 7.4.2 through 7.4.4. (see Rev. 2.1 PCI
Spec., p.187)

0127

Base Regiser 4
Base Register 3
Base Register 2
Base Register 1
Base Register 0

BASE_HIT[7:0] Bus
3456

Base Register 5
CardBus CIS Pointer

Expansion ROM Address

Reserved

ADDR_VLD Out Out Address Valid - indicates the address phase on the PCI bus and that the
address is available on the ADIO[31:0] internal bus.. Latched address in-
formation is captured and presented on ADDR[31:0] . The PCI bus com-
mand is latched and presented on S_CBE[3:0] and latched, decoded, and
presented on PCI_CMD[15:0] during ADDR_VLD. ADDR_VLD is active dur-
ing both LogiCore Target and Initiator operations but is primarily used by the
user application in Target operations. (see Rev. 2.1 PCI Spec., p.246)

DATA_VLD Out Out Data Valid - indicates that a data transaction has occurred on the PCI
AD[31:0] bus. DATA_VLD is asserted High on the clock cycle after both
IRDY- and TRDY- are Low on the PCI bus and either the Target state ma-
chine is in the S_DATA state or the Initiator state machine is in the M_DATA
state.

When receiving data, DATA_VLD indicates that data is available on the
ADIO[31:0] bus lines. When providing data, DATA_VLD indicates that the
data was received by the agent on opposite end of the transaction. See sec-
tion 11.2 for more information.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 12

Signal Name Target Initiator Functional Description
CNFG_VLD Out Out Configuration Valid - indicates the beginning of a potential configuration

cycle. Valid for a single cycle, coincident with ADDR_VLD. Does not fully de-
code a configuration cycle (requires PCI_CMD10 or PCI_CMD11) signals.

S_WRDN

(WR_RD-_IN)

Out Out Slave Write/Read Direction - indicates a Target Write to the user application
when asserted High or a Target Read operation from the user application
when asserted Low. Was called WR_RD-_IN in Version 1.0.

PCI_CMD[15:0] Out Out PCI Bus Command - indicates the current decoded and latched PCI bus
operation as defined in Table 4. The PCI_CMD[15:0] bus is a one-hot
decoded representation of the CBE[3:0] bus. The command is captured dur-
ing the address phase on the bus and remains asserted until the next ad-
dress phase.

01234567891015

Memory Read Multiple
Configuration Write
Configuration Read

Memory Write
Memory Read

I/O Write
I/O Read

Special Cycle
Interrupt Acknowledge

PCI_CMD[15:0] Bus
11121314

Dual Address Cycle
Memory Read Line

Memory Write & Invalidate

Reserved Reserved

S_CBE[3:0]

(CBE_IN[3:0])

Out Out Slave Command/Byte Enables - indicates the PCI bus command/byte en-
ables for a Target access to the user application. The PCI bus command
appears during the address phase (also see PCI_CMD[15:0]). Byte en-
ables are presented during the data phase. Note that byte enables are active
low. Was called CBE_IN[3:0] in Version 1.0.

Address/Data
ADDR[31:0] Out Out Latched Address bus - used for pass-through data cycles and to load user

address counters or DMA controllers. Address data is registered on
ADDR[31:0] internally by the ADDR_VLD signal and the next rising clock
edge.

ADIO[31:0] I/O
(internal
3-state)

I/O
(internal
3-state)

Address/Data Bus - the internal bi-directional PCI address/data bus. Used
to receive data and to present both address and data information. This bus
must be driven using the outputs of internal tri-state buffers (BUFTs).

Note: The user application should never drive the ADIO[31:0] during a
Configuration Read operation. The configuration data is stored internal to the
LogiCore PCI Interface. The user application should disable output enables
during Configuration Read cycles by using the PCI_CMD10 signal.

PERR- In In Data Parity Error - indicates any parity errors generated on the PCI bus.
PERR- is captured in an input flip-flop by the PCI clock.

13 LC-DI-PCIM-C/LC-DI-PCIS-C

Signal Name Target Initiator Functional Description
User Control

READY In In Ready - signals that the user application is ready to transfer data. Used in
both Target-Only and Target/Initiator applications to drive TRDY_IO during
Target access and IRDY_IO during Initiator operations. If de-asserted, wait
states are inserted. This signal is timing critical and should be driven from a
flip-flop, if possible. (see Rev. 2.1 PCI Spec., p.238)

Ideally, the user application should be designed so that it is always READY to
send or receive data. If not, READY should be delayed until the application is
ready to support a sustained burst transfer. READY cannot be delayed more
than 8 clocks (PCI requirement). Avoid asserting, then de-asserting READY
within a transfer, if possible, as this complicates the user application logic.
See section 11.1 for more information.

If always ready, READY should be connected to an FDPE flip-flop with the
data input driven Low. This technique preserves placement and routing in-
formation contained in the guide file. See the ‘testbnch ’ schematic test
design for an example.

TERM In In Terminate Transaction - signals the LogiCore Target interface that the user
application is terminating the data flow. Causes PCI Interface to assert
STOP_IO. Used in conjunction with READY to force either a Target Retry
(TERM asserted, READY de-asserted on the first transfer) or a Target Discon-
nect (TERM asserted, READY asserted or de-asserted depend on whether
data is available). See section 12 for more information. This signal is timing
critical and should be driven from a flip-flop, if possible. (see Rev. 2.1 PCI
Spec., p.238)

If not used, TERM should be connected to an FDPE flip-flop with the data in-
put driven Low. This technique preserves placement and routing information
contained in the guide file. See the ‘testbnch ’ schematic test design for an
example.

T_ABORT In In Target Abort - an optional input used to signal a serious error condition and
requires the current transaction to stop. Causes the LogiCore Target inter-
face to assert STOP_IO and de-assert DEVSEL_IO after first claiming the
cycle by asserting DEVSEL_IO. No data will be transferred. (see Rev. 2.1
PCI Spec., p.238).

If not used, T_ABORT should be tied Low.
SRC_EN Out Out Source Data Enable - an enable signal used to increment the data pointer

when the LogiCore macro is the source of data in a burst application (Target
Read, Initiator Write). SRC_EN can be left unconnected in non-burst applica-
tions. Similar to DATA_VLD signal but advanced by one data transfer. Indi-
cates when data is loaded into the output flip-flops. See section 14.2.1.

INTR- In In Interrupt - signals an interrupt request from the user application. Active-Low.
Generates an interrupt request (INTA_O) on the PCI bus. The INTR- signal
should be driven by an FDPE flip-flop (preset on power-up). This flip-flop
should be loaded Low to assert the INT_A signal and cleared (set) by the
interrupt handling software.

KEEPOUT In In Keep Out - isolates the internal ADIO[31:0] bus from an PCI-side ac-
cesses. This allows the user application to perform functions on the
ADIO[31:0] bus without interference. Assert TERM High and de-assert
READY Low to cause a Target Retry condition on the PCI bus, should another
agent attempt access.

If not used, KEEPOUT should be connected to an FDPE flip-flop with the data
input driven Low. This technique preserves placement and routing informa-
tion contained in the guide file. See the ‘testbnch ’ schematic test design
for an example.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 14

Signal Name Target Initiator Functional Description
Initiator-Only Functions

REQUEST N/A In Request (Initiator Only) - used to request a PCI Initiator transaction. Re-
quests the PCI bus from the bus arbiter. Causes PCI Interface to assert
REQ_O if the Master Enable bit (CSR2) is set in the Command Register.
Should be asserted at least until the Initiator asserts M_ADDR-. Should not
be kept asserted unless the user application requires long burst transfers.
Do not keep REQUEST asserted in an attempt to force the bus arbiter to park
the bus on the Initiator.

The Bus Master Enable bit (CSR2) must be set in the Command Register
before REQUEST has any affect on the PCI interface. This should be done by
the system configuration software. The Initiator functionality is disabled at
power-on and after RST_I is asserted.

In most applications, REQUEST is driven by a set-dominant synchronous
set/reset flip-flop. The flip-flop is set by the user application requesting the
bus and reset when the LogiCore interface asserts its M_ADDR- signal.

M_CBE[3:0]

(CBE_OUT[3:0])

N/A In Master Command/Byte Enables (Initiator Only) - used by the user applica-
tion to drive command/byte-enables during Initiator transactions The com-
mand should be presented during the M_ADDR- state (Initiator address
phase). The byte-enables should be presented during the data phase(s)
(M_DATA state). In 32-bit applications, M_CBE[3:0] =‘0000’ during the data
phase. During the data phase, the CBE lines indicate which of the byte lanes
is enabled (active-Low). Was called CBE_OUT[3:0] in Version 1.0.

Any value provided by the user application appears one clock cycle later on
CBE[3:0]_IO when performing an Initiator function. The user application must
be able to support any command or byte enables provided.

M_WRDN

(WR_RD-_OUT)

N/A In Master Write/Read Direction (Initiator Only) - driven by the user applica-
tion to perform an Initiator Write operation when asserted High or an Initiator
Read operation when asserted Low. Controls data flow when the user appli-
cation is operating as an Initiator. Was called WR_RD-_OUT in Version 1.0.

In many applications, M_WRDN is the M_CBE0 signal captured in a flip-flop,
with its clock-enable asserted while M_DATA is de-asserted. See the
‘testbnch ’ schematic test design for an example.

COMPLETE N/A In Complete (Initiator Only) - signals the Initiator state machine to finish the
current transaction. COMPLETE is asserted on the next-to-last data transfer
on a burst transaction or coincident with REQUEST on a single-cycle transfer.
One data cycle after COMPLETE is received, the Initiator state machine will
automatically de-asserts IRDY_IO for one cycle and then de-assert
FRAME_IO coincident with again asserting IRDY_IO. COMPLETE must be
asserted through the end of the data phase (until the Initiator state machine
leaves the M_DATA state).

This signal is timing critical and should be driven directly from a flip-flop if
possible. There should be no more than two levels of logic generating
COMPLETE. See the ‘testbnch ’ schematic test design for an example.

TIME_OUT N/A Out Latency Timer Timeout (Initiator Only) - indicates that the Latency Timer
counter has timed out and that the user application has exceeded the maxi-
mum number of clock cycles allowed by the system configuration software.
The Latency Timer is required in all Initiator applications that can burst more
than two data words. If not used, the Latency Timer can be disabled by
modifying the PCI_LC_I.2 schematic page. This conserves the logic con-
sumed by the Latency Timer.

If TIME_OUT is asserted while the system arbiter still asserts GNT-, then the
operation continues until either the operation is complete, or the arbiter re-
moves GNT-. If TIME_OUT is asserted and the system arbiter has removed
GNT-, then the operation terminates prematurely. Note: The Latency Timer
default value is 0, indicating immediate time-out. Be sure that the system
configuration software writes a sufficiently large value in the Latency Timer
Register to allow the desired transfer size.

N/A = Not Applicable for Target-Only function.

15 LC-DI-PCIM-C/LC-DI-PCIS-C

Signal Name Target Initiator Functional Description
State Bits

Master (Initiator) State Machine (see PCI Spec. Rev. 2.1, page 239)
M_DATA N/A Out Indicates that the Initiator is in the data transfer state. The M_DATA (data)

state occurs unconditionally after the M_ADDR- (address) is asserted.
DR_BUS N/A Out Indicates that the bus is parked on the LogiCore Initiator (the system arbiter is

asserting GNT_I, even though the user application is not requesting the bus).
The LogiCore Initiator is then responsible for driving the AD[31:0]_IO bus, the
CBE[3:0]_IO bus, and the PAR_IO signal to prevent these system bus signals
from floating. The actual values driven on these lines are not important. In
applications supporting Bus Parking, DR_BUS is NORed with M_ADDR- to
enable the tri-state buffers (BUFTs) driving the Initiator’s start address on to
the internal ADIO[31:0] bus.

M_ADDR-

(ADDR, ADDR_BE)

N/A Out Indicates that the Initiator is in the address state or is in bus parking. Active-
Low signal. Only asserted when the Initiator has received GNT_I, the bus is
idle, and the user application has asserted REQUEST. Not truly a state, but
combinatorial. M_ADDR- is asserted with a one clock cycle overlap with ei-
ther the I_IDLE or DR_BUS states.

Used to drive the output-enable on the tri-state buffers (BUFTs) driving the
Initiator’s start address onto the internal ADIO[31:0] bus. The Initiator
drives the AD[31:0]_IO outputs with the address presented on the
ADIO[31:0] bus and enables the CBE[3:0]_IO outputs to drive the PCI bus
command presented on the M_CBE[3:0] bus by the user application. The
start address is presented when the Initiator state machine is in the address
state. Was called ADDR or ADDR_BE in previous versions of the macro.

I_IDLE N/A Out Indicates that the Initiator is in the idle state. The Initiator is either not en-
abled, does not have an active REQUEST pending, and has not received
GNT_I from the system arbiter. In a Target-only application, the Initiator state
machine is always in the I_IDLE state. In an Initiator application, the state
machine will always remain in either the I_IDLE (GNT_I = High) or DR_BUS
(GNT_I = Low) state when the Master Enable bit (CSR2) in the Command
Register is reset (bus mastering disabled).

Slave (Target) State Machine (see PCI Spec. Rev. 2.1, page 236)
IDLE Out Out Indicates that the Target is in the idle state. There is no activity on the bus.
B_BUSY Out Out Indicates that the PCI bus is busy. An agent has started a transaction

(FRAME_IO has been asserted Low) but the Target state machine either has
not yet finished decoding the address or has determined that it is not the tar-
get of the current operation.

S_DATA Out Out Indicates that the Target is in the data transfer state. The Target has de-
coded the address and matched it against one of its Base Address Registers
or a configuration operation is in progress. The Target has accepted the re-
quest and will respond.

BACKOFF Out Out Indicates that the user application asserted TERM (STOP_IO asserted on the
bus) and the Target state machine is waiting for the transaction to complete.

FREE Out Out Target state machine state bit to indicate Free state. (Implemented but not
tested or officially supported).

LOCKED Out Out Target state machine state bit to indicate Locked state. (Implemented but not
tested or officially supported).

N/A = Not Applicable for Target-Only function.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 16

Signal Name Target Initiator Functional Description
Status Output

CSR[39:0]

Command
Register

Out Out Extended Command/Status - Provides the current contents of the Com-
mand/Status registers in the Configuration Space Header plus additional val-
ues to indicate the status of the current bus transaction. Shaded values indi-
cate read-only locations.

The Command Register values are directly set or reset through the system
configuration software.

All values in the command register, CSR[15:0] are either registered or read-
only. The current LogiCore PCI interface does not monitor Special Cycles,
does not support the Memory Write and Invalidate command, does not sup-
port palette snooping, does not support address stepping, and does not sup-
port fast back-to-back transactions. Consequently, these bits are read-only
and defined a ‘0’.

IMPORTANT: The Bus Master Enable bit must be set in the command regis-
ter before the Initiator can access the PCI bus. The Memory Enable bit or the
I/O Enable bit must be set in the command register before the Target will
respond to memory or I/O commands.

00000

012345678910

000000

15

Fast Back-to-Back Enable
SERR- Enable

Address Stepping Supported
Report Parity Errors

Reserved

VGA Palette Snoop Enable
Memory Write and Invalidate Supported

Monitor Special Cycles
Bus Master Enable

Memory Access Enable
I/O Access Enable

Command Register

Status
Register

The Status Register bits are set automatically by the LogiCore PCI Interface.
Individual status bits are reset by the system software by writing a ‘1’ to the bit
location to be reset.

All values in the status register, CSR[31:16] are either registered or read-
only.

The DEVSEL- Timing bits in the Status Register are read-only and defined as
‘10’ because the current implementation of the LogiCore Target interface
always responds with slow decode. The Fast Back-to-Back Capable and 66
MHz Capable bits are read-only and set to ‘0’ because the current LogiCore
macro does not support either.

000

1620212223242526

00000

31 Reserved

User-Defined Feature
Fast Back-to-Back Capable
Data Parity Error Detected

DEVSEL- Timing
 10 - slow

Signaled Target Abort
Received Target Abort
Received Master Abort
Signaled System Error
Detected Parity Error

66 MHz Capable

30 29 28 27

1

Status Register

17 LC-DI-PCIM-C/LC-DI-PCIS-C

Signal Name Target Initiator Functional Description
CSR[39:0]

Transaction
Status

Out Out The Transaction Status bits are an extension of the standard Com-
mand/Stature Register bits and reflect the current status of a PCI transaction.
The bits are not particular to a transaction involving the user application.
These status bits reflect any action on the bus, except for Target Signaled
Abort and Master Abort, which are only signaled if the user application was
involved in the transfer. CSR[37:32] are combinatorial and are only as-
serted during the clock cycle after the condition was true on the PCI bus.

3233343536

Valid Data Cycle
End of Transaction
Normal Termination
Target Termination

Target Signaled Disconnect
with data
Target Signaled Abort
Master Abort (no DEVSEL-)

39 38 37

Transaction Status

Target Signaled Retry or
Disconnect without data

User Clock
PCI_CLK Out Out PCI Clock - is the PCI clock driven from via a global primary clock buffer

(BUFGP) inside the FPGA device. Use this clock for all flip-flops that are
synchronized the PCI system clock.

6. Building a Complete PCI Design

The following list of tasks describes the development
steps required to turn the LogiCore PCI Interface into a
fully-functioning design integrated with your user applica-
tion logic. A Target-Only design does not require any of
the Initiator steps. However, an Initiator always requires
the Target interface. The burst support steps may re-
quire four separate sub-steps—read and write operations
for both Target and Initiator.

6.1 Target Interface (every design)

n Configure the Base Address Register(s). See Section
7.4.

n Configure the contents of the Configuration Space
Header ROM. See Section 7.6.

n Build the interface to the read/write locations in the
user application. See Section 9.

n Decide how to signal various target termination condi-
tions, if required by the application. See Section 12.

6.2 Initiator Interface (Target/Initiator designs)

n Build the Initiator “mission” state machine. See Sec-
tions 15 and 16.

• Determine what types of transactions are required.
Determine the size of each transfer.

• Decide how to handle receive various target termi-
nation conditions.

• Decide how to arbitrate between a pending Initiator
request and an incoming Target transaction.

• Drive the REQUEST and COMPLETE signals.

n Build the interface to drive address values onto the
ADIO[31:0] bus, drive commands on the
M_CBE[3:0] bus, and set the direction of data flow
on the M_WRDN signal. See Section 16.1.

n Build the interface to the read/write locations in the
user application. See Section 10.

6.3 Burst Support (both Target and Initiator)

n Build an address counter and associated control logic.
See Section 14.1.

n Providing pipelined source data and responding to
various Target and Initiator termination conditions.
See Section 14.2.

n Build FIFOs for the specific application, if required.
See Section 14.4.

n Build COMPLETE logic and transfer control. See Sec-
tion 16.4.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 18

7. Customizing the LogiCore PCI Interface

The LogiCore PCI Interface provides a foundation PCI
design implemented in an XC4013E FPGA. Using this
design dramatically increases your engineering produc-
tivity by eliminating the detailed design issues of a PCI
local bus interface.

IMPORTANT!

!

Be sure to thoroughly review the
“Release Document” enclosed with the
LogiCore product. It describes how to
install the LogiCore design and any
known problems.

Tailoring the LogiCore PCI Interface for your specific
application is easy, as indicated in the following steps.

If using the LC-DI-PCIS-C (Target-Only) product, please
skip directly to Step 3.

1. If using the LC-DI-PCIM-C product and a Target-Only
application is required instead of a full Tar-
get/Initiator, then the Master state machine logic
must be disabled. The LC-DI-PCIM-C product is pre-
configured as a Target/Initiator, but may be config-
ured as a Target-Only application. The LC-DI-PCIS-
C product is pre-configured for Target-only opera-
tions and cannot be changed.

2. If the application is a Target/Initiator, and it will never
burst more than two data cycles, then the Latency
Timer can be disabled, conserving logic and simplify-
ing control logic.

3. If the application only supports single-transfers, then
the pipelining logic can be turned off.

4. Define the size and mode of one or both Base Ad-
dress Registers (BARs). In the design provided,
there are two BARs (BAR0 and BAR1).

5. Enter static data into the configuration header ROM.

7.1 Step 1: Changing Target/Initiator to Target-Only

This step is only required if using the Target/Initiator (LC-
DI-PCIM-C) product and the application requires a Tar-
get-Only interface. Most of the LogiCore PCI Interface is
common for both Target-Only and Target/Initiator de-
signs. However, in Target-Only applications, the master
state machine must be disabled, conserving logic.

Table 7. PCI Controller Options
PCI Application Controller Symbol

Target-Only (default) slave
Target/Initiator master

Figure 4. PCI_LC_I.1 schematic showing the Master/Slave state machine option (LC-DI-PCIM product only)
and various option settings.

19 LC-DI-PCIM-C/LC-DI-PCIS-C

The pci_lc_i.1 schematic, as delivered, is configured
as a Target/Initiator. Configuring the macro as a Target
requires changing a sub-symbol within the LogiCore PCI
macro. Table 7 lists the names for the Target-Only or
Target/Initiator options.

To change the Target/Initiator design (default) into a Tar-
get-Only function,

1. Open the schematic named pci_lc_i.1 .

2. Select the symbol currently called master .

3. Use the VIEWlogic Powerview ‘Change Component’
command to replace the master symbol with slave .

ccomp slave

Design Note : This document refers to VIEWlogic Pow-
erview commands. The equivalent
Workview Office command is

Edit àà Replace

7.2 Step 2: Disabling Latency Timer (Target/Initiator)

This step is only required if using the Target/Initiator (LC-
DI-PCIM-C) product and the application will only initiate
single data transfers (i.e.—never initiate burst transfers).
The macro, as delivered, has the Latency Timer enabled.

For applications that do not support bursting or that burst
only two words, the Latency Timer function can be dis-
abled. This saves additional logic and routing resources.

To disable the Latency Timer,

1. Open the schematic named pci_lc_i.1

2. Select the symbol currently called on and labeled as
“Latency Timer Enable.”

3. Use the VIEWlogic ‘Change Component’ command
to replace the ON symbol with OFF.

ccomp off

7.3 Step 3: Disabling Data Source Pipelining Logic

This step is only required if the application only supports
single data transfers as either a Target-Only or a Tar-
get/Initiator application. If the user application will never
transfer more than a single data word per transaction, the
pipelining logic controlling the data sourcing can be
turned off. This pipelining logic is enabled, by default, in
the LogiCore interface.

To disable the data source pipelining logic,

1. Open the schematic named pci_lc_i.1

2. Select the symbol currently called on and labeled as
“Data Source Enable.”

Figure 5. PCI_LC_I.2 schematic showing the customizable Base Address Registers (BASE_REG) and the
Configuration Space Header ROM (PCI-ROM) for read-only values.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 20

3. Use the VIEWlogic ‘Change Component’ command
to replace the ON symbol with OFF.

ccomp off

Disabling the logic permanently enables the clock-
enables on the output flip-flops driving the AD, CBE, and
PAR pins.

7.4 Base Address Registers

7.4.1 PCI Supports Distributed Address Decoding

There is no central address decoding resource in a PCI
application. The address decoding is distributed across
the various agents that make up the system. Each agent
is responsible for decoding its own address. The agent
requests an address range during system configuration.
The system resource arbiter provides each agent with an
absolute base address. This is written into a Base Ad-
dress Register (BAR) contained in the agent’s logic.

During the address phase of a PCI transaction, each
agent monitors the address presented on the AD bus and
the command presented on the CBE lines to determine
whether it is the target of the transaction. If the pre-
sented address matches an address range defined in one
of the agent’s BARs and the command is accessing the
address space (memory or I/O) defined by the BAR, then
the agent will claim the transaction by asserting its
DEVSEL- signal.

7.4.2 Base Address Registers in the LogiCore Inter-
face

The LogiCore PCI design supports up to two Base Ad-
dress Registers (BARs). These two registers (BAR) ap-
pear in the schematic named pci_lc_i.2 .

A BAR supports either I/O or memory space. Memory
space is preferred because it is the more flexible of the
two and supports burst transfers. I/O space is supported,
primarily for PC legacy support. In PCI legacy applica-
tions, I/O space is valuable. Therefore, use a memory
BAR if possible.

Each BAR has several attributes. These attributes de-
fine:

n whether the address space is defined as memory or
I/O. The BAR will only respond to commands that ac-
cess the specified address space.

n the size of the address space block required. In the
LogiCore interface, the address space can be as
small as 16 bytes, or as large as 256 Mbytes.

n the ability of memory space (not I/O space) to be
prefetched

n the location of memory space in total address space.
This can be anywhere in 32-bit address space, any-
where in 64-bit address space, or below 1 Mbyte.

Each of these attributes is set by replacing one or more
of the symbols attached to the BASE_REG symbol on the
pci_lc_i.2 schematic page.

The BARs have been specially designed to match the
PCI preferred pinout for the XC4013E device in the
PQ208 package, so that the registers align with the inter-
nal data bus, ADIO[31:0] , and other logic in the FPGA.
BAR0 and BAR1 are similar.

Design Note : Using a different pinout, package or de-
vice size requires modifying the relative
placement constraints (RLOCs) used in
this design example. Only the XC4013E
device in the PQ208 package is sup-
ported.

If a design requires only a single BAR, then BAR0 must
be used.

7.4.3 Customizing the Base Address Register Modes

See Section 6.2.5 in the PCI Local Bus Specification, Revision
2.1.

There are two different user address spaces available in
a PCI application—memory and I/O. In most PC legacy
systems, I/O space is rare and valuable. Consequently,
memory space is preferred in most applications. How-
ever, both are supported by the PCI LogiCore macro.

Table 8. Base Address Register Modes.
Block Type Mode Symbol
Memory memory
I/O io

For memory space, there are additional options available,
depending on where the memory is located in address
space and whether it is prefetchable or not.

SIZE[31:0]

PREFETCH

LOCATE[1:0]
IO_MEM

START

HIT

BASE_REG
SIZE16M

NOFETCH
32BIT_AD
MEMORY

Figure 6. A Base Address Register (BAR) configured
to decode a 16 Mbyte block of non-prefetchable
memory, in 32-bit address space.

SIZE[31:0]

PREFETCH

LOCATE[1:0]
IO_MEM

START

HIT

BASE_REG
SIZE16

NOFETCH
32BIT_AD
MEMORY

IO
IO_MEM

Figure 7. A Base Address Register (BAR) configured
to decode a 16 byte block of I/O space.

21 LC-DI-PCIM-C/LC-DI-PCIS-C

Memory can be located anywhere in 32-bit address
space (default), below 1 Mb (for PC legacy systems), or
anywhere in 64-bit address space (for 64-bit PCI sys-
tems).

Table 9 Memory Space Location.
Description Symbol

Located anywhere in 32-bit address space 32bit_ad
Located below 1MB below_1m
Located anywhere in 64-bit address space 64bit_ad

The PCI specification defines memory as prefetchable if:

n there are no side-effects on reads (i.e.—data will not
be destroyed by reading, as from a FIFO).

n byte write operations can be merged into a single
double-word write, when applicable.

Table 10 Memory Type.
Description Symbol

Prefetchable as per the PCI specification prefetch
Not prefetchable nofetch

Example:

Your application requires a single BAR for decoding a
range of I/O addresses.

1. Look in Table 8 for the mode symbol name corre-
sponding to I/O address space, called io .

2. Open the schematic named pci_lc_i.2 .

3. Because only one BAR is required for the application,
locate the BASE_REG symbol labeled as BAR0. The
symbol for I/O space is larger than the symbol used
to define memory space. This is done because
memory space has additional options. Select, and
delete the symbols attached to LOCATE[1:0] and
PREFETCH ports on the BASE_REG symbol. Then,
select the symbol labeled MEMORY by clicking on it
with the cursor.

4. Execute the VIEWlogic ‘Change Component’ com-
mand to replace the memory symbol with io by typ-
ing

ccomp io

7.4.4 Customizing the Base Address Register Size

Base Address Registers (BARs) come in different sizes.
This allows users to easily modify the default design for
specific interface requirements. The LogiCore PCI macro
supports the block sizes as indicated in Table 11.

Table 11. Default Base Address Register Sizes
Block Size For Type # Bits Symbol

16 28 size16

32 27 size32

64 I/O 26 size64

128 25 size128

256 24 size256

512 23 size512

1K 22 size1k

2K 21 size2k

4K 20 size4k

8K 19 size8k

16K 18 size16k

32K 17 size32k

64K 16 size64k

128K 15 size128k

256K 14 size256k

512K 13 size512k

1M Memory 12 size1m

2M 11 size2m

4M 10 size4m

8M 9 size8m

16M 8 size16m

32M 7 size32m

64M 6 size64m

128M 5 size128m

256M 4 size256m

Generally, memory spaces below 4K in size should use a
4K block size, as recommended in the PCI specification.
The maximum I/O space allowed is 256 bytes. I/O space,
because it is generally so precious, must fully decode the
32-bit address.

Each block size decodes the corresponding number of
bits in the address comparator. For a different base ad-
dress block size, select the appropriate symbol listed and
in Table 11. Then, execute a change component com-
mand with the new component.

The largest allowable I/O space is 256 bytes (not Kbytes
or Mbytes). The PCI specification recommends a 4K
block size for any memory space 4K or smaller.

Example:

Your application requires a 256-byte block of memory
address space.

1. Look in Table 11 for the mode symbol name corre-
sponding to a 256-byte address space. The appro-
priate symbol is called size256 . However, because
the application requires memory space, use a 4K
block size instead (symbol size4k)

2. Open the schematic named pci_lc_i.2 .

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 22

3. Select the symbol connected to the SIZE[31:0] port
on Base Address Register 0.

4. Use the VIEWlogic ‘Change Component’ command
to replace the current symbol with size4k by typing

ccomp size4k

Design Note :

INFO

Base
Address
Register

Also see the documentation on the Base
Address Register embedded in the
VIEWlogic design by opening the sche-
matic page called bar_info.1 .

7.5 PCI Configuration Space Overview

The XC4000E LogiCore PCI Interfaces implements the
first 64 bytes of a Type 0, version 2.1, Configuration
Space Header (CSH), as shown in Table 12. The CSH
contains two types of data.

n Some of the locations, such as the Base Address
registers and Command/Status Register, are
read/write locations. These locations are built using
CLB flip-flops and logic.

n Other locations, such as the Device ID, Vendor ID,
Class Code, and Revision ID, are read-only locations.
These locations are more efficiently mapped into the
CLB lookup tables.

Table 12. PCI Configuration Space Header
31 16 15 0

Device ID Vendor ID 00h
Status Command 04h

Class Code Rev ID 08h
BIST Header

Type
Latency
Timer

Cache
Line Size

0Ch

Base Address Register 0 (BAR0) 10h
Base Address Register 1 (BAR1) 14h
Base Address Register 2 (BAR2) 18h
Base Address Register 3 (BAR3) 1Ch
Base Address Register 4 (BAR5) 20h
Base Address Register 5 (BAR5) 24h

Cardbus CIS Pointer 28h
Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h
Reserved 34h
Reserved 38h

Max_Lat Min_Gnt Interrupt
Pin

Interrupt
Line

3Ch

Note: Shaded address locations are not implemented in
the LogiCore PCI Interface default configuration. These
locations return zero during configuration read accesses.

The default configuration, shown on sheet pci_lc_i.2 ,
includes two Base Address Registers (BAR0 and BAR1),
one Command/Status Register (PCI-CSR) and a Read
Only Memory space (PCI-ROM).

Each base address register and the command/status
register symbol represents a separate 32-bit address lo-
cation. The Read-Only Memory space currently stores
two 32-bit values for Device ID/Vendor ID and Class
Code/Rev ID. All remaining 32-bit registers return a

value of zero during configuration read cycles and no
operation occurs during configuration write cycles. See
“Chapter 6” of the PCI Specification , Revision 2.1 for
more information.

7.6 Configuring the Read-Only CSH Values

Some locations within the configuration space header
(CSH) are read-only. These include Device ID, Vendor
ID, Class Code, and Revision ID. Because these values
do not change, the LogiCore PCI Interface implements
them in CLB lookup tables.

These read-only values—and any unsupported locations
in the CSH—are defined in the PCI-ROM symbol shown
on the pci_lc_i.2 schematic. Inside the pci-rom.1
schematic, there is a representation of the CSH memory
space as shown in Figure 8. The most convenient
method to enter these values is via a ROM table. High-
Gate Design, a Xilinx LogiCore Alliance partner, created
this innovative and easy-to-use method.

4 0 1 3 1 0 E E

Device ID Vendor ID

Status Register Command Register

0 B 4 0 0 0 0 2

Class Code Rev ID

BIST Hdr Type Lat Tmr Ln Siz

Base Address 0

Base Address 1

Base Address 2

Base Address 3

Base Address 4

Base Address 5

CardBus CIS Pointer

Expansion ROM Base Address

Reserved

Reserved

Max_Lat Min_Gnt Int_Pin Int_Ln

31 0
ROM TABLE

Subsystem ID Subsystem Vendor ID

Figure 8. PCI Configuration ROM Table.

23 LC-DI-PCIM-C/LC-DI-PCIS-C

Design Note : Replace the device ID and vendor ID
with your company’s ID values. Do not
use the values provided. A vendor ID
may not be required for embedded PCI
applications. Unique vendor IDs are re-
quested through the PCI-SIG (see
Appendix B: Resources)

The ROM table schematic is compilable as is. Do not
move any of the sub-symbols on the schematic. The only
recommended operation is a ‘change component’ on the
HEX sub-symbols located within this table.

Each 32-bit read-only address is composed of eight nib-
bles. The content of each nibble is specified by changing
any of the symbols to the desired value.

n
0 (hex-0) through F (hex-f) represent the 16

hexadecimal values.

n (hex-x) represents a location that is either not
supported or is implemented using CLB flip-flops
(read/write locations). Returns zero.

Example:

You wish to change a nibble to a hexadecimal ‘F’

1. Open the schematic named pci-rom.1 .

2. Select the desired ROM location nibble symbol.

3. Execute the VIEWlogic ‘Change Component’ com-
mand to change the nibble value to hex-f .

ccomp hex-f

The fields that should be modified are listed and de-
scribed below.

7.6.1 Device ID (Location 00h, upper word)

The device ID is a unique identifier for your application.
This field can be any value. In the design, as delivered,
the device ID is set to 4013h to reflect that the LogiCore
design is implemented in an XC4013E FPGA. Change
this value for your application.

7.6.2 Vendor ID (Location 00h, lower word)

This field identifies the manufacturer of the device or
application. Valid identifiers are assigned by the PCI-SIG
to guarantee that each identifier is unique. As delivered,
the vendor ID is set to 10EEh. This is Xilinx’ vendor ID
and should not be used for your application. Enter your
vendor identification number here. The value FFFFh is
reserved.

7.6.3 Revision ID (Location 08h, lower byte)

The revision ID indicates the revision of the device or
application. It is an extension to the device ID. The value
used in this design is 02h to reflect that this is the second

major revision of the LogiCore interface. Add the revision
ID for your application here.

7.6.4 Class Code (Location 08h, upper 24 bits)

The class code identifies the general function of a device.
It is a read-only location. The value, as provided in the
default configuration, identifies the device as a generic
co-processor function.

The value is divided into three byte-size fields as de-
scribed in Section 6.2.1. in the PCI specification. The
upper byte broadly identifies the type of function per-
formed by the device. In this example, the class code is
set to 0Bh, indicating the “Processors” class.

The middle byte defines a sub-class that more specifi-
cally identifies the device’s function. The sub-classes are
defined in Appendix D of the PCI specification. The ex-
ample uses 40h, indicating the “Co-Processors” subclass.

The lower byte defines a specific register-level pro-
gramming interface (if any). This allows device-
independent software to interact with the device.

Enter the values appropriate for your application.

7.7 Command Register

The Command Register is defined as part of the Configu-
ration Space Header but is implemented using CLB logic.
Most of the Command Register values are read/write lo-
cations.

The LogiCore interface defines all 16 bits of the com-
mand register. The output of the Command Register is
always provided as CSR[15:0] of the CSR[39:0] out-
put bus.

The values in the Command Register are directly set or
reset via the system software.

The Command Register bits defined in the LogiCore in-
terface include:

n I/O Access Enable (CSR0) – Allows one or both of the
base address registers (BARs) to access I/O space.
A value of 1 enables I/O accesses. Default is 0.

n Memory Access Enable (CSR1) – Allows one or both
of the base address registers (BARs) to access mem-
ory space. A value of 1 enables memory accesses.
Default is 0.

n Bus Master Enable (CSR2) – Valid only for Tar-
get/Initiator applications. Allows the Initiator to gen-
erate PCI accesses. This bit must be set to 1 before
any Initiator bus activity happens. Default is 0.

Design Note : The Bus Master Enable bit must be set
by the system software before the Logi-
Core interface can perform Initiator
transactions.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 24

n Monitor Special Cycles (CSR3) – Special Cycle
monitoring is not supported. Read-only location de-
fined as 0.

n Memory Write and Invalidate Enable (CSR4) –
Memory Write and Invalidate operations by the Initia-
tor are not supported. Read-only location defined as
0.

n VGA Palette Snoop Enable (CSR5) – VGA palette
snooping is not supported. Read-only location de-
fined as 0.

n Report Parity Errors (CSR6) – Controls how the de-
vice responds to parity errors. The LogiCore macro
always generates parity. Set to enable parity error re-
porting. Default is 0.

n Address Stepping Supported (CSR7) – Address
stepping is not supported. Read-only location defined
as 0.

n SERR- Enable (CSR8) – Controls how the device re-
sponds to system errors. Allows the LogiCore inter-
face to assert the SERR- pin if an address parity error
is detected. Allows the LogiCore interface to set the
Signaled System Error bit (CSR30) in the Status Reg-
ister. Set to enable system error reporting. Default is
0.

n Fast Back-to-Back Enable (CSR9) – Fast back-to-
back transfers are not supported. Read-only location
defined as 0.

n Reserved (CSR[15:10]) – Reserved. Read-only
locations defined as 0.

7.8 Status Register

The Status Register is defined as part of the CSH but is
implemented using CLB logic. Most of the values are
read/write locations.

The LogiCore interface defines all 16 bits of the status
register. The output of the Status Register is always
provided as CSR[31:16] of the CSR[39:0] output bus.

The bits in the Status Register are set automatically by
the LogiCore interface. Status bits are reset when the
system software writes a ‘1’ to a bit position in the Status
Register.

The Status Register bits set or used by the LogiCore in-
terface include:

n Reserved (CSR[20:16]) – Reserved. Read-only lo-
cations defined as 0.

n 66 MHz Capable (CSR21) – The LogiCore macro, as
currently supplied, does not support 66 MHz applica-
tions. Read-only location defined as 0.

n User-Defined Feature (CSR22) – Not used in the
LogiCore interface. Always reset.

n Fast Back-to-Back Capable (CSR23) – The LogiCore
macro, as currently supplied, does not support fast
back-to-back operations. Read-only location defined
as 0.

n Data Parity Error Detected (CSR24) – A data parity
error occurred while the LogiCore interface was the
initiator of a data transfer. Only set when a parity er-
ror occurs and the Report Parity Errors bit (CSR6) is
set in the Command Register. Initiator-only function.

n DEVSEL- Timing (CSR[26:25]) – Indicates how fast
the LogiCore interface will decode an access to one of
its Base Address Registers (BARs) or configuration
accesses. The current implementation supports slow
decode speed (DEVSEL- asserted on the third clock
after FRAME- recognized asserted). Read-only loca-
tion defined as 10b, which should not be changed.

n Signaled Target Abort (CSR27) – Set by the Logi-
Core macro when the user application asserts
T_ABORT and another agent attempted a Target ac-
cess.

n Received Target Abort (CSR28) – Set by the Logi-
Core Initiator when it detects that the addressed Tar-
get signaled a Target Abort condition. The user appli-
cation should not retry an operation to the Target that
asserted the Target Abort condition. Initiator-only
function.

n Received Master Abort (CSR29) – Set by the Logi-
Core Initiator if no Target responds to a transaction
that it initiated. Indicates that the addressed target is
malfunctioning or non-existent. Initiator-only function.

n Signaled System Error (CSR30) – Set if the LogiCore
interface detects a parity error during the address
phase of a transaction. Only set if the SERR- Enable
bit (CSR8) is set in the Command Register.

n Detected Parity Error (CSR31) – Set if the LogiCore
interface detects a parity error and the Report Parity
Errors bit (CSR6) is set in the Command Register.

7.9 Transaction Status bits (CSR[39:32])

The contents of the Command and Status registers are
provided on the 40-bit bus called CSR[39:0] , an output
from the LogiCore PCI Interface. The lower 32 bits cor-
respond directly to the Command/Status Register
(location 04h) as defined in the Configuration Space
Header. The upper 8 bits provide status on the current
bus transaction.

These bits, with the exception of CSR[39:38] , reflect the
current status of a transaction for any bus activity—not
just activity where the user application is involved. Con-
sequently, these status bits must be qualified with other
signals (i.e. S_DATA, M_DATA, etc.) if they are involved in
the user application control logic.

n Valid Data Cycle (CSR32) – asserted High for the
clock cycle following each valid data transfer on the

25 LC-DI-PCIM-C/LC-DI-PCIS-C

bus. Similar to DATA_VLD, except not specific to the
user application logic.

n End of Transaction (CSR33) – asserted High for the
clock cycle following the end of a transaction cycle
(FRAME- sampled de-asserted and either TRDY- or
STOP- sampled asserted).

n Normal Termination (CSR34) – asserted High for the
clock cycle following a transaction that ended without
a target termination condition (FRAME- and STOP-
sampled de-asserted and TRDY- sampled asserted).

n Target Termination (CSR35) – asserted High for the
clock cycle following a transaction that ended with a
target termination condition (FRAME- sampled de-
asserted and STOP- sampled asserted).

n Target Retry or Target Disconnect without Data
(CSR36) – asserted High for the clock cycle after the
target signaled a retry condition or a disconnect with-
out data (FRAME- and TRDY- sampled de-asserted
and STOP- sampled asserted). A target retry condi-
tion is only signaled on the first transfer cycle. A dis-
connect without data occurs on any subsequent
transfer cycle.

n Target Disconnect with Data (CSR37) – asserted
High for the clock cycle after the target signaled a dis-
connect with data (FRAME- sampled de-asserted and
TRDY- and STOP- sampled asserted).

n Target Signaled Abort (CSR38) – asserted High for
the clock cycle after the target signaled a Target Abort
condition.

n Master Abort (CSR39) – asserted High on the clock
cycle after the Initiator determines that the addressed
target has not responded to the transaction request
(DEVSEL- never asserted). Equivalent to Received
Master Abort bit in the Status Register (CSR29)

8. General Design Guidelines

The following guidelines and descriptions will help sim-
plify building the user application.

8.1 Know the Degree of Difficulty

PCI is challenging to implement in any technology and
especially so in FPGA devices. Table 13 indicates the
degree of difficult in implementing various types of Logi-
Core PCI designs.

The degree of difficulty is sharply influenced by

n the maximum system clock frequency, and

n whether the design is a Target-Only or a Tar-
get/Initiator application, and

n whether the user application supports burst transfers.

A 33 MHz application is more challenge than a 25 MHz
application because there is less cycle time available for

logic levels and routing. Burst transfer support adds
complexity, which typically adds layers of logic and rout-
ing. A Target/Initiator application is more challenging
than a Target-Only function because of the added com-
plexity of the Initiator state machine and control logic.

IMPORTANT!

!

A 33 MHz, fully-compliant Tar-
get/Initiator design requiring burst
transfer support should only be at-
tempted by advanced Xilinx designers
or by those willing to invest the extra
effort to obtain maximum bandwidth.

All PCI implementations benefit from floorplanning the
user application logic. Those marked as ‘Difficult’ or
“Advanced user only!’ require floorplanning. Likewise, all
implementations demand careful attention to system
performance requirements. Pipelining, logic mapping,
floorplanning, and logic duplication are all methods that
help boost system performance.

Carefully review Table 13 to determine if the LogiCore
PCI interface matches your application needs.

Table 13. Degree of Difficulty to Implement
Various LogiCore PCI Designs.

Function

System
Clock

Frequency

Burst
Transfer
Support

Degree of
Difficulty

25 MHz No Moderate
Target-Only Yes Moderate

33 MHz No Moderate
Yes Difficult

25 MHz No Moderate
Target/ Yes Difficult
Initiator 33 MHz No Difficult

Yes Advanced
user only!

8.2 Understanding the Signal Pipelining

In order to meet the stringent PCI performance require-
ments, the LogiCore interface pipelines all of the bus
control signals and the data path. Consequently, some
signals must be presented up to two clock cycles before
they appear on the PCI bus. Likewise, arriving signals
are captured and available to the user application one
cycle after they appear on the PCI bus. Figure 9 pro-
vides some basic guidelines on how the LogiCore inter-
face is pipelined.

When the user application receives a signal, it is cap-
tured in an input flip-flop to guarantee PCI’s 7 ns setup
time. The signal is available to the user application one
clock cycle after it appears on the PCI bus. For example,
data is captured in input flip-flops and becomes available
on the ADIO[31:0] internal bus one cycle after it ap-
peared on the PCI bus. Signals like ADDR_VLD or
DATA_VLD signal the user application to grab the value
from the ADIO[31:0] bus.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 26

When the user application is sending a combinatorial
signal, the signal must be presented one cycle before it is
to appear on the PCI bus. Most of the outputs connected
to the PCI bus originate from an output flip-flop to meet
PCI’s 11 ns clock-to-output specification. If the signal
first originates from a register in the user application, then
the register inputs must be presented two cycles before
the signal is to appear on the PCI bus.

8.3 Keep it Registered

The best method to simplify timing and increase system
performance in an FPGA design is to keep everything
registered. This means that all inputs and outputs from
the user application should come from, or connect to, a
flip-flop. While registering signals may not be possible
for all paths, it simplifies timing analysis.

8.4 Critical Path Signals

Watch the timing and loading on the signals listed below.
These signals are usually part of the critical timing path in
most applications. The signals are divided into those that
are in every application and those only found in Tar-
get/Initiator applications.

8.4.1 Every Application

The following list of signals are timing critical in all Logi-
Core PCI designs and may require special attention when
connected to the user application.

n IRDY- — a heavily-loaded signal that connects to the
Target state machine.

n TRDY- — a heavily-loaded signal that connects to the
Initiator state machine.

n ADDR_VLD — a heavily-loaded signal, typically used in
Target-side applications. Connects to FRAME- inter-
nally to the LogiCore macro.

n DATA_VLD — becomes heavily-loaded in most user
applications. DATA_VLD is not used within the Logi-
Core interface. However, DATA_VLD uses IRDY- ,
TRDY-, S_DATA, and M_DATA as inputs, which are all
timing-critical signals themselves. For Initiator appli-

cations, the critical path is most likely from DATA_VLD
through the COMPLETE logic.

n READY — connects to the Target and Initiator state
machine control logic through multiple layers of logic.
Drive READY from a flip-flop, if possible. The most
timing critical path is from READY to the IRDY- and
TRDY- outputs on the PCI bus.

n TERM — connects to the Target state machine control
logic through multiple layers of logic. Drive TERM from
a flip-flop, if possible. The most timing critical path is
from TERM to the TRDY- and STOP- outputs on the
PCI bus.

n KEEPOUT — connects to the internal output-enables
driving data onto the internal ADIO[31:0] bus. The
most timing critical path is from KEEPOUT, through the
output enable (OE_ADI) driving incoming data onto
ADIO[31:0] , to any destination connected to the
ADIO[31:0] bus.

n S_DATA — becomes heavily-loaded in most user ap-
plications. The LogiCore interface uses an internally-
duplicated copy of S_DATA.

8.4.2 Target/Initiator Applications

n FRAME- — a heavily-loaded signal used throughout
the LogiCore interface and the user application. In
Target/Initiator applications, the FRAME- signal be-
comes even more heavily-loaded because it connects
to the Initiator control logic. Unfortunately, FRAME-
cannot be internally duplicated due to PCI loading re-
strictions.

n COMPLETE — is an input from the user application. It
drives the IRDY- and FRAME- logic in the Initiator
state machine. The critical path is usually from
DATA_VLD, through COMPLETE, to setup on the
FRAME- output on the PCI bus. Floorplanning
COMPLETE and its associated logic helps to reduce
this path.

n M_ADDR- — connects to the output-enables driving
the Initiator’s start address onto the ADIO[31:0] in-
ternal bus. This path has little timing margin and may
require pre-placement using the Floorplanner tool.
Using the XDelay timing analyzer, critical paths
through M_ADDR- originate from the FRAME-, IRDY-,
or GNT- signals on the PCI bus.

n M_DATA — becomes heavily-loaded in most user ap-
plications. The LogiCore interface uses an internally-
duplicated copy of M_DATA.

8.5 Watch the Levels of Logic

Most of the PCI application needs to operate at 33 MHz.
Some of the data paths, such as those where the inter-
face is supplying data, are two-cycle operations executing
at 16.5 MHz. In most cases, try to keep the levels of
logic between flip-flops down to two layers. Three are

Present
combina-

torial values

Registered
values
appear

Presented
signal

appears on
PCI bus

0-1 +1-2

Send signal from
User Application

to PCI bus

Receive signal
from PCI bus to
User Application

Present
input to

registered
signals

Signal
presented
on PCI bus

Signal
captured

and
available to

user
application

PCI Bus Clock

Figure 9. LogiCore PCI Pipelining.

27 LC-DI-PCIM-C/LC-DI-PCIS-C

possible, with some care. Four or more logic layers
probably will not meet 33 MHz performance.

8.6 Make Only Allowed Modifications

The LogiCore PCI interface is user-modifiable in some
sections, including the number and type of Base Address
Registers. The entire source schematic is provided with
the product. However, do not make modifications beyond
those described in this user’s guide. Modifications be-
yond those allowed have adverse effects on system tim-
ing and PCI protocol compliance.

The design structure and the modifiable schematics are
shown in Figure 10. Only the five top-level schematics
and the pci-rom.1 schematic are in the design direc-
tory. The remainder of the PCI interface design resides
in a library called LC_PCI, which must be referenced in
the viewdraw.ini file.

Only the first two top-level schematics (pci_lc_i.1 , .2)
should ever be modified in a design. The other three
pages (pci_lc_i.3 , .4 , .5) are only included to make
the VIEWlogic hierarchy work. They should not be modi-
fied. The other modifiable schematic is called pci-
rom.1 . It contains the ROM used to specify the read-
only values in the Configuration Space Header.

The symbols for these modifiable pages point to the proj-
ect directory. The remaining logic under these top-level
schematics points to components in the LC_PCI library.

The user application, shown as userapp in Figure 10,
contains the user application function connected to the
PCI LogiCore interface. The customer user application is
placed under the userapp hierarchy.

8.7 Place User Application Logic in USERAPP Wrap-
per

The LogiCore PCI interface uses a variety of advanced
software features to obtain PCI system performance.
These advanced features include using a “guide file” to
direct the placement and routing of timing-critical logic.

The placement guide file used in the LogiCore PCI inter-
face is a fragment of a full design. This fragment guaran-
tees the performance of timing-critical PCI control signals
in the Target and Initiator state machine logic. The guide
file was carefully hand-crafted to achieve maximum per-
formance.

Once the user application is fully integrated with the
LogiCore interface, the design is final. The guide file
helps the final design meet critical PCI performance re-
quirements. The PPR placement and routing program
matches logic and routing in the final PCI design to logic
and routing in the hand-crafted guide file. Individual logic
blocks and nets are matched by their instance name. For
this reason, it is very important that the names used in
the final design match those used in the guide file. If the
names do not match, then PPR will not be able guide the

full design. Consequently, PPR will not be able to
achieve the required PCI performance.

To guarantee that critical instance names and net names
match those used in the guide file, the custom user appli-
cation should be placed in the provided “wrapper” sche-
matic. During installation, a /user project directory is
created. This directory contains all of the necessary, and
modifiable, schematics for creating a final design.

The top-level schematic file in the /user directory is
called pci_top.1 . All user application logic should be
placed in the design hierarchy under the userapp.1
symbol shown in Figure 10. To add I/O pins for the user
application logic, edit the right-hand side of the us-
erapp.1 symbol and create new I/O ports on the sym-
bol.

All of the labels on the pci_lc_i symbol and all of the
labels on the nets surrounding the pci_lc_i symbol on
the pci_top.1 schematic must remain as provided.
Changing them will cause the guide file to fail.

IMPORTANT!

!

Do not change the symbol or net labels
in the pci_top.1 schematic. Chang-
ing these labels may cause the guide
file to fail.

pci_top

userapp

pci_lc_i.1

pci_lc_i.2

pci_lc_i.3

pci_lc_i.4

pci_lc_i.5

pci-rom.1

- Master/Slave setting (Initiator only)
- Enable Latency Timer (Initiator only)
- Enable Data Sourcing Pipeline

- Configure Base Address Registers
- Enable Interrupts
- Modify setting in configuration ROM

- Set Device and Vendor ID
- Enter Class Code and Revision ID

DO NOT
MODIFY

LC_PCI
Library

DO NOT
MODIFY

pci_lc_i

Figure 10. Design structure for LogiCore PCI inter-
face.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 28

9. Target Data Transfers and Control

9.1 Typical Target data interface

In the majority of applications, data is transferred to and
from read/write registers in the user application. These
registers may also connect to internal FIFOs or to I/O
pins on the user application. A typical data connection
will appear something like Figure 11.

9.2 Target Write

During a Target Write operation, data is captured from
the PCI bus to a data register in the user application by
asserting the CLK-ENA clock enable input shown in
Figure 11.

9.2.1 Interface Control Signals

The following signals control a Target Write operation.

n BASE_HITx=1 – indicates that one of the Base Ad-
dress registers recognized that it is the target of the
current operation. Use to select which set of registers
are the target of the write operation.

n S_WRDN=1 – indicates a write operation.

n S_DATA=1 – indicates that the Target state machine
is in the data transfer state.

n DATA_VLD=1 – indicates that both the Target and
the Initiator have indicated that data is available by
asserting their respective TRDY- and IRDY- signals.
Data is available to the user application on
ADIO[31:0] .

n PCI_CMD[15:0] or S_CBE[3:0] – sometimes used to
further decode a command. A memory base register
responds to all memory command (Memory Write,
Memory Write and Invalidate, etc.). The user applica-
tion may not be able to respond to all commands.

n ADDR_CNT[x:0] – for burst transfers, part or all of an
address counter, supplied in the user application, may
be required as part of the decode logic.

9.2.2 Data Signals

n ADIO[31:0] – data to be written to the user application
is stable and available on the internal data bus when
DATA_VLD is asserted High.

9.2.3 Driving the CLK-ENA input to the register

The signal required to decode a Target Write operation
are active and available at different times. For example,
BASE_HITx is active for only a single cycle, when the
Base Address Register decides that it is the target of the
operation. S_WRDN is available at the start of the address
cycle and held throughout the transaction as are
PCI_CMD[15:0] and S_CBE[3:0] , if required at all.

The critical gating signal is DATA_VLD. It is the final sig-
nal required to qualify the write operation. Consequently,
the other signals can be decoded earlier and gated with
DATA_VLD.

Part of the function would be decoded and held in a flip-
flop. The equation for this decode would appear some-
thing like:

BHx_DEC := BASE_HITx * S_WRDN
* [PCI_CMDx] (optional)
* [ADDR_CNTx] (optional)
+ (!S_DATA * BHx_DEC)

The last term (!S_DATA * BHx_DEC) holds the decode
asserted throughout the entire data transfer state. Again,
BASE_HITx is only active for a single clock cycle at the
beginning of the transaction. Effectively, the above equa-
tion describes a synchronous Set/Reset flip-flop with Set
dominant. The flip-flop is set when BASE_HITx and as-
sociate terms are decoded and reset when S_DATA is
Low.

Pre-decoding BHx_DEC allows more time for routing and
reduces the number of logic levels from the critical input,
DATA_VLD. The equation at the CLK-ENA input on the
register appears as:

CLK-ENA := BHx_DEC * DATA_VLD

9.3 Target Read

Decoding a Target Read is simpler. For this case, the
application must enable the OE signal, enabling the regis-
ter data onto the ADIO[31:0] internal bus.

9.3.1 Interface Control Signals

The following signals control a Target Read operation.

n BASE_HITx=1 – indicates that one of the Base Ad-
dress registers recognized that it is the target of the
current operation. Use to select which set of registers
are the target of the read operation.

n S_WRDN=0 – indicates a read operation.

n S_DATA=1 – indicates that the Target state machine
is in the data transfer state.

n PCI_CMD[15:0] or S_CBE[3:0] – sometimes used to
further decode a command. A memory base register
responds to all memory commands (Memory Read,
Memory Read Multiple, etc.). The user application
may not be able to respond to all commands.

REGISTER

ADIO[31:0]

Q[31:0]

CLK-ENA

PCI_CLK

OE

Figure 11. Example read/write register.

29 LC-DI-PCIM-C/LC-DI-PCIS-C

 The user application should not present data on
ADIO[31:0] during Configuration Read operations.
The PCI_CMD10 signal is used to disable three-state
buffers in the user application.

n ADDR_CNT[x:0] – for burst transfers, part or all of an
address counter, supplied in the user application, may
be required as part of the decode logic.

9.3.2 Data Signals

n ADIO[31:0] – data is enabled onto ADIO[31:0] and
presented on the AD[31:0] pins by the LogiCore inter-
face.

9.3.3 Driving the OE signal to present the register’s
data

The signals required to decode a Target Read operation
are active and available at different times. For example,
BASE_HITx is active for only a single cycle, when the
Base Address Register decides that it is the target of the
operation. S_WRDN is available at the start of the address
cycle and held throughout the transaction as are
PCI_CMD[15:0] and S_CBE[3:0] , if required at all.

The DATA_VLD is not required as part of the output en-
able logic. It is the responsibility of the Initiator that
started the transaction to know when data transfer cycle
occurred.

The output enable function would be decoded and held in
a flip-flop. Note that the output enable function is active
Low. Consequently, the flip-flop macro should be present
on power-up and device reset. The FDPE flip-flop macro
provides this capability. The equation for this function
would appear something like:

BHx_OE := !(BASE_HITx * !S_WRDN
* [PCI_CMDx] (optional)
* [ADDR_CNTx] (optional)
+ (!S_DATA * !BHx_OE))

The last term (!S_DATA * BHx_DEC) holds the decode
asserted throughout the entire data transfer state. Again,
BASE_HITx is only active for a single clock cycle at the
beginning of the transaction.

10. Initiator Data Transfers and Control

10.1 Typical Initiator data interface

In the majority of applications, data will be transferred to
and from read/write registers in the user application.
These registers may connect to internal FIFOs or may
connect to I/O pins on user application. An example data
connection is shown in Figure 11.

10.2 Initiator Read

During an Initiator Read operation, data is captured from
the PCI bus to the data register in the user application by

asserting the CLK-ENA clock enable input, as shown in
Figure 11.

10.2.1 Interface Control Signals

The following signals control an Initiator Read operation.

n M_WRDN=0 – indicates a read operation.

n M_DATA=1 – indicates that the Initiator state machine
is in the data transfer state.

n DATA_VLD=1 – indicates that both the Target and
the Initiator have indicated that data is available by
asserting their respective TRDY- or IRDY- signals.
Data is available to the user application on
ADIO[31:0] .

10.2.2 Data Signals

n ADIO[31:0] – data to be written to the user application
is stable and available on the internal data bus when
DATA_VLD is asserted High.

10.2.3 Driving the CLK-ENA input to the register

Most of the signals required to decode an Initiator Read
operation are active at the start of the transaction. For
example, M_WRDN should be provided by the user appli-
cation for the duration of the transaction.

The critical gating signal is DATA_VLD. It is the final sig-
nal required to qualify the write operation.

CLK-ENA = !M_WRDN * M_DATA * DATA_VLD

10.3 Initiator Write

Decoding an Initiator Write is simpler. For this case, the
application must enable the OE signal, enabling the regis-
ter data onto the ADIO[31:0] internal bus.

10.3.1 Interface Control Signals

The following signals control an Initiator Write operation.

n M_WRDN=1 – indicates a write operation

n M_DATA=1 – indicates that the Initiator state machine
is in the data transfer state

10.3.2 Data Signals

n ADIO[31:0] – data is enabled onto ADIO[31:0] and
presented on the AD[31:0] pins by the LogiCore inter-
face.

10.3.3 Driving the OE signal to present the register’s
data

The equation for an Initiator Read from an internal data
source appears something like:

OE = !(M_WRDN * M_DATA)

Note, again, that the output enables for internal tri-state
buffers (BUFTs) are active-Low.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 30

10.4 Data Steering Control

Table 14 lists the signals required to steer data on the
ADIO bus during different transactions. Note that the
table refers to the flow of data to or from the PCI bus in-
stead of using just Target Read or Initiator Write.

The various signals can be grouped together. For ex-
ample, the logic to enable data onto the ADIO[31:0]
bus in all cases where the LogiCore macro is providing
data (PCI ß LogiCore) would appear as:

OE = !(!M_ADDR-
+ M_DATA * M_WRDN
+ S_DATA * !S_WRDN * !PCI_CMD10))

Note that the entire term is inverted because it feeds an
active-Low output enable. The tri-state buffers driving
the ADIO[31:0] bus (BUFTs) have active-Low output
enables.

Table 14. Data Steering Control.
Direction LogiCore as

Target
LogiCore as

Initiator
PCI àà LogiCore Target Write Initiator Read
 Address Phase ADDR_VLD
 Data Phase S_DATA *

S_WRDN
M_DATA *
!M_WRDN

PCI ßß LogiCore Target Read Initiator Write
 Address Phase !M_ADDR-
 Data Phase S_DATA *

!S_WRDN
M_DATA *
M_WRDN

* = Logical AND operation, ! = logical inversion. Note: The
user application should never drive the ADIO[31:0] bus dur-
ing a Configuration Read operation.

11. Data Flow Control Signals

There are two general data flow control signals: READY
and DATA_VLD. READY indicates that the user applica-
tion is ready to perform a transaction. DATA_VLD indi-
cates that a data transfer has taken place.

11.1 READY: Ready to Perform a Transaction

Asserting READY High tells the LogiCore PCI Interface
that the user application is ready to send or receive data.

The ideal PCI agent would always be ready to accept any
transaction. However, this is more difficult in practice.
Some general guidelines for the READY signal are as fol-
lows:

n If possible, have the user application ready to respond
to any transaction. This is possible in some applica-
tions, but requires careful design in the user applica-
tion and requires FIFOs for burst applications.

n If the user application cannot always be ready, then
delay asserting READY until the user application can
continue without de-asserting READY again in the
middle of the transaction. Delaying READY for up to
eight clock cycles is allowed by the PCI specification.

Beyond that, a Target application should issue a Tar-
get Retry condition by asserting TERM.

n If possible, the user application should avoid asserting
and de-asserting READY during the course of a trans-
action. READY is a timing-critical path. Toggling it
during the course of a transaction makes the control
logic more complicated and the system timing more
difficult.

n In Initiator operations, the user application should be
ready to perform the transaction before it requests the
bus. However, the user application may delay assert-
ing READY to arbitrate between an incoming Target
access and a pending Initiator transaction. For ex-
ample, the Initiator may have requested the bus but
receives a Target access before the system arbiter
grants the bus to the Initiator. The user application
must respond appropriately.

n If possible, drive READY with the output of a flip-flop.
This simplifies system timing.

READY is not required to be asserted during configuration
transactions because the configuration logic is integrated
in the macro and always available.

11.2 DATA_VLD: Valid Data Transfer

The DATA_VLD signal indicates that data was transferred
on the PCI bus whenever:

n IRDY- is asserted Low, and

n TRDY- is asserted Low, and

n The Target state machine is in the S_DATA state or
the Initiator state machine is in the M_DATA state. The
Initiator state machine is not used in Target-Only ap-
plications.

During an operation where the LogiCore macro is receiv-
ing data from the PCI bus (PCI à LogiCore), DATA_VLD
indicates that valid data is available on the ADIO[31:0]
internal bus.

During an operation where the LogiCore macro is provid-
ing data to the PCI bus (PCI ß LogiCore), DATA_VLD
indicates that data was received by the agent on the
other end of the transaction.

Because DATA_VLD is widely used and generally in-
volved in timing-critical paths, it is sometimes useful to
duplicate the function of DATA_VLD in the user applica-
tion. The equation for DATA_VLD is

DATA_VLD = !IRDY-
* !TRDY-
* (M_DATA + S_DATA)

12. Target-Initiated Terminations

The user application can force various Target-initiated
termination conditions using the TERM and READY signals
as shown in Table 15.

31 LC-DI-PCIM-C/LC-DI-PCIS-C

A Target Retry condition must be signaled by the user
application before the data cycle begins (READY de-
asserted, TERM asserted). This informs the Initiator that it
must retry the transaction again later. The Initiator is al-
ways obliged to retry a transaction terminated with a Tar-
get Retry.

A Target Disconnect informs the Initiator that the Target
is no longer able to continue the transfer (e.g., the user
application FIFO is full and cannot accept any more
data). The initiating agent is not required to continue the
operation later. The READY signal is used to indicate
whether the Disconnect occurs with or without data.
READY is asserted High, if data is transferred on the Dis-
connect cycle.

A Disconnect without data on the first cycle is equivalent
to a Retry.

Table 15. Forcing Target Termination Conditions.
From User Application

Condition Bus Signals READY TERM

Normal TRDY- = 0
DEVSEL- = 0
STOP- = 1

High Low

Retry TRDY- = 1
DEVSEL- = 0
STOP- = 0

Low High before
first cycle

Disconnect TRDY- = X
DEVSEL- = 0
STOP- = 0

High to dis-
connect with
data

High

There is a special type of Target Terminations called
Target Abort. This condition is used to signal a serious
error condition from the user application. It informs the
Initiator that it cannot perform the requested transaction
due to various potential problems such as the Initiator
attempting to burst beyond a Target’s address block.

When the Target is accessed with the T_ABORT signal
asserted from the user application, the LogiCore macro
automatically signals the Target Abort condition on the
bus (DEVSEL- asserted claiming the cycle, then
DEVSEL- de-asserted with STOP- asserted). It also sets
the Signaled Target Abort bit (CSR27) in the Status Reg-
ister.

13. Automatic Wait-State Insertion

The LogiCore PCI Interface automatically inserts wait
states (de-asserts IRDY- or TRDY-) under two conditions:

1. The LogiCore interface is the source of the data pre-
sented on the PCI bus during a burst transfer (i.e.—
Target Read, Initiator Write).

2. The LogiCore interface is the Initiator of the transac-
tion and is completing a burst transfer (IRDY- only).

13.1 Transfers where the LogiCore Interface is pro-
viding data

The LogiCore PCI Interface automatically inserts wait
states (de-asserts IRDY- or TRDY-) when it is the source
of data during the transaction. Consequently, the Logi-
Core interface can accept data at 100% burst transfer
rate, but can only supply data at 50%.

Table 16. XC4000E-3 LogiCore Transfer Rates
LogiCore Operation

Direction Target Initiator
PCIèLogiCore
 Target Write
 Initiator Read

100% 100%

PCIçLogiCore
 Target Read
 Initiator Write

50% 50%

13.1.1 Why the limitation exists

This limitation is due to the dynamics of a PCI burst
transfer. The first example, Figure 12, shows the Logi-
Core PCI interface acting as a Target. It can accept data
at 100% transfer rate. The LogiCore interface captures
the data in its input flip-flops and can respond with its
TRDY- signal at the proper time (TRDY- should always
be asserted because, ideally, READY should always be
asserted in the user application once the burst transfer
begins).

Initiator
LogiCore

PCI
Target

Target Write

100% Data Rate

TRDY-

Figure 12. Full Data Rate on PCI Write to LogiCore
PCI Interface.

Contrast this with the example shown in Figure 13, a Tar-
get Read operation. Here, the LogiCore interface is the
source of the data. The macro does not know if a trans-
action has completed until 7 ns before the next clock
edge (worst-case). The Initiator may insert its own wait
states (IRDY- de-asserted).

Assume a 100% burst transfer rate design. Once the
Initiator has accepted the transaction, the LogiCore inter-
face would need to recognize IRDY- asserted, decode
this signal with other control logic, route the resulting sig-
nal to 36 I/O locations on three edges of the device, en-
able the output flip-flops.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 32

Initiator
LogiCore

PCI
Target

Target Read

50% Data Rate

IRDY- (7 ns setup)

Figure 13. 50% Data Rate on PCI Read from LogiCore
PCI Interface.

Meeting these requirements is difficult in the XC4013E-2
FPGA. Instead, the LogiCore interface behaves slightly
differently. Once the Initiator has accepted the transac-
tion, the LogiCore interface provides the current data
(which was available on the AD bus pins) and automati-
cally inserted a TRDY- wait state. This extra wait state
allows the LogiCore interface and the user application to
reliably present the next data on the AD bus pins.

13.1.2 When the wait state occurs

The automatically-inserted wait state on IRDY- and
TRDY- only happens during burst transfers where the
LogiCore interface is supplying data to the PCI bus (PCI
ß LogiCore). It never happens on single transfers. The
wait state only lasts for a single clock cycle, assuming
READY is asserted. The wait state is inserted on the cy-
cle immediately following a successful data transfer.

n The IRDY- wait state only happens on Initiator Write
burst transfers. See Figure 23 for an example wave-
form.

n The TRDY- wait state only happens on Target Read
burst transfers. See the second transaction in Figure
32 for an example waveform.

13.2 Wait state when completing an Initiator trans-
action

The Initiator state machine automatically inserts a single
IRDY- wait state at the completion of a burst data trans-
fer. This was done to provide reliable de-assertion of the
FRAME- signal. FRAME- cannot be de-asserted until the
next-to-last data transfer has completed. See Figure 24
for an example waveform.

The extra IRDY- wait state is really only evident during
Initiator Read burst operations. During an Initiator Write,
this wait state is merged with the IRDY- wait state auto-
matically inserted because the LogiCore macro is the
source of data.

The extra IRDY- wait is not inserted on single transfers,
only on bursts.

14. Handling Burst Transfers

Performing a single data transfer across the PCI bus is
the simplest type of transaction. However, because of
the overhead of distributed address decoding, this wastes
valuable bus bandwidth. PCI’s performance advantage is

in burst transactions, where two or more data words are
transferred during the transaction.

Building a user application that supports single transfers
is the easiest to design. Building a user application that
supports burst transfers is significantly more complex, but
worth the effort, if maximum bandwidth is the goal.

14.1 Keeping Track of the Address Pointer

In a PCI transaction, only the starting address is broad-
cast over the bus. For single transfers, this is sufficient.
For burst transfers, however, the user application must
keep track of the current address.

14.1.1 Target

If the Target application performs burst transfers, then it
must keep a local copy of the current address pointer and
increment it after every successful data transfer cycle.
Luckily, this counter can be small, depending on the Tar-
get’s requested address block size (set in the BAR).

The counter must be able to support bursts throughout its
enter address range. For example, if the Target only de-
codes a 4K block of memory space, then the address
counter need only keep track of addresses within the 4K
block. A 10-bit loadable binary counter will suffice (4K
requires 12-bits to cover the address space but bits 0 and
1 will always equal zero for 32-bit transfers). If an Initiator
attempts to keep bursting past the 4K block boundary,
then the Target should issue a Target Disconnect, indi-
cating that it is not able to perform the requested opera-
tion.

The upper 20 bits of the address pointer are a simple
register, loaded during the address cycle of the transac-
tion (ADDR_VLD signal). Likewise, the starting address
within the address block is loaded into the 10-bit binary
counter during the address cycle.

The upper 20 bits, if not required in the user application,
can be eliminated.

Target Address Pointer
31 12 11 2 1 0

20-bit data register
10-bit load-
able, binary

counter
0 0

If the Target supports multiple BARs, a single address
pointer should suffice, but the counter must support the
largest block of address space. If one BAR supports a
4K block while the other supports a 16M block, then the
counter must support the 16M block (24-bit loadable bi-
nary counter).

14.1.2 Initiator

The Initiator must also keep track of the current address
pointer. During the course of a transaction, the Initiator
might receive a target termination condition.

33 LC-DI-PCIM-C/LC-DI-PCIS-C

If it receives a Target Retry, the Initiator simply restarts
the transaction from the starting address. However, if it
receives a Target Disconnect, it may have to start the
transaction somewhere in the middle of a longer burst
transfer. To complicate matters, the Target can discon-
nect with, or without data. The Initiator must increment or
hold the address pointer accordingly. The status bits that
drive the decision are contained in the upper eight bits of
the CSR[39:0] status bus (see Table 6).

The Initiator must always present and track the full 32 bits
of address when starting the transaction (the lowest 2 bits
are always zero, reflecting Linear Burst ordering). In
most applications, however, a smaller address counter
and a larger data register are sufficient to track the cur-
rent address. This approach is similar to that discussed
above for the Target pointer. The actual size of the
counter depends on the Initiator’s function. What is the
largest-sized burst that the Initiator will ever perform?
Will the transaction cause the address counter to roll over
a major address boundary or will all of the transactions be
confined to a smaller address block?

Worst-case, the Initiator may require a full 30-bit, load-
able binary counter. Again, the lowest 2 bits are always
zero, because the Initiator only supports Linear Burst or-
dering.

When implemented, the Initiator address counter/register
combination should be located in CLB column 4 in the
device. Likewise, it should be added to the timing con-
straints file provided with the LogiCore design. See the
‘testbnch ’ schematic test design for an example.

14.2 Supplying Data in Burst Transfers

One of the difficulties in building a PCI interface in an
FPGA is supplying data at full transfer rate. Receiving
data at full rate is not a problem. When the interface is
supplying data, however, it does not know if a transaction
has completed until 7 ns before the next clock edge
(worst-case). The other end of the transfer may have
inserted wait states.

14.2.1 Data Pipeline Source Enable

The LogiCore interface provides burst data using a pipe-
lined data path. The pipelined data source enable signal,
SRC_EN, is used to advance any data pointers in the user
application logic or to enable new data onto the internal

ADIO[31:0] data bus. The data pointers may provide
address to an internal FIFO, or SRC_EN may merely load
the next data value.

Internally, the LogiCore macro captures the data value
provided by the user application on the ADIO[31:0] bus
and holds this value on the output flip-flops driving the
AD[31:0]_IO bus pins, as shown in Figure 14. This al-
lows the user application to present the next data value
on ADIO[31:0] , instead of holding the previous value
until the current transaction completes.
The output flip-flops driving CBE[3:0]_IO and PAR_IO are
similarly controlled by the clock-enable. PAR_IO follows
the AD[31:0]_IO and CBE[3:0]_IO busses by one clock
cycle.

Figure 15 shows a burst data transfer, where the Logi-
Core macro is performing an Initiator Write operation
(PCI ß LogiCore). A Target Read operation is similar.

After presenting the address value on the internal
ADIO[31:0] during the M_ADDR- state, the LogiCore
macro asserts the SRC_EN signal causing the user appli-
cation to advance to the next data. The Data0 data that
was on ADIO[31:0] and now held in the AD[31:0] out-
put flip-flops. The user application presents the next
data, Data1, on the ADIO[31:0] bus. Both values are
held until the next data transfer.

Immediately after the transfer, the LogiCore macro again
asserts SRC_EN, causing the user application to provide
the next data value (Data2) and captures the current
value on the ADIO[31:0] bus (Data1) in the AD[31:0]
output flip-flops.

This approach allows the user application to provide new
data, without needing to wait for the current data transfer
to complete, resulting in higher data throughput.

14.2.2 Handling Termination Conditions

Using SRC_EN to present the next data value on
ADIO[31:0] or to advance any source data points does
require some additional control logic. The state machine
providing data from the user application must consider
various termination conditions. These conditions may

SRC_EN
CE

CE

Data Source

Output
Flip-flops

PAD
ADIO[31:0]

AD[31:0]_IO

Figure 14. Data path when user application is
sourcing data.

FRAME-
IRDY-

TRDY-
SRC_EN

ADIO[31:0] Data1Addr

AD[31:0]

A
dd

re
ss

P
re

se
nt

ed

Data0

Addr

P
C

I A
dd

re
ss

P
ha

se

Data2

Data0 Data1

W
ai

t
S

ta
te

D
at

a
T

ra
ns

fe
r

W
ai

t
S

ta
te

W
ai

t
S

ta
te

D
at

a
T

ra
ns

fe
r

W
ai

t
S

ta
te

Figure 15. Burst data transfer showing SRC_EN sig-
nal.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 34

require decrementing a counter or keeping a shadow
copy of the previous data values.

If the source pointer is advanced to the next data loca-
tion, and the data is never transferred, then the control
logic must decide what to do with the non-transferred
data. In some cases, the data can be discarded. For
example, if the user application is providing data from an
external RAM, the non-transferred data can be discarded.
The original data remains in the external RAM for future
use.

In other applications, reads may be destructive, such as
reading from a single-port FIFO (i.e.–the data
“disappears” once it is read from the FIFO). For these
cases, the unused data must be restored in the data
source so it is available for future use.

These termination conditions include:

n The last data value in a Target Read burst trans-
fer. Because the Target does not know the size of a
burst transfer, it receives the termination condition
(the Initiator de-asserts FRAME-) after it has already
advanced the source pointer to the next data location.
The user application will need to decrement the
source pointer.

n A Target Termination condition during an Initiator
Write. The Initiator may have started a transaction
that the Target cannot complete. The Target may
signal some form of Target termination condition, such
as Target Retry or Target Disconnect. The Initiator
will have already advanced its source data pointer to
the next location when it receives the termination
conditions. The user application will need to decre-
ment the source pointer, taking into account a Dis-
connect with, or without data.

14.3 LogiCore PCI transfer rates

The PCI bus derives its performance from its ability to
support burst transfers. The performance of any PCI
application depends largely on the burst transfer capabil-
ity of the interface chip—not how fast it responds to or
initiates a single data transfer. This is why the
XC4000E's unique on-chip, synchronous RAM capability
is essential for high-performance PCI applications.

Achieving the most effective use of the PCI bus requires
a careful understanding of the interaction between vari-
ous system designs and the user application. PCI per-
formance is controlled by three key factors:

1. Aggregate bandwidth,

2. Data throughput, and

3. Access latency.

The maximum theoretical bandwidth for a 33 MHz, 32-bit
PCI system is 132 Mbytes per second, assuming an in-
finite burst transfer size. However, there is additional
overhead due to the way that PCI handles transactions
plus any additional overhead contributed by the actual

logic implementation. Therefore, the actual system
bandwidth varies tremendously from one platform to an-
other. Modeling data throughput (bytes transferred per
transfer time) as a function of access latency (delay to
first data) and sustained data transfer rate (delay to sub-
sequent data) provides insight into the various factors
that limit PCI performance.

Figure 16 compares maximum data transfer between the
ideal PCI read and write operations and LogiCore PCI
Interface Initiator and Target transactions.

The ideal transaction assumes that both the target and
the initiator operate with zero wait-states and that the tar-
get responds with fast decode speed. The ideal PCI
Write transaction requires three clock cycles to first data
(Idle, Address, Data) and one clock cycle for each con-
secutive double-word transfer (3-1-1-1). The ideal PCI
Read transaction requires four clock cycles to first data
(Idle, Address, turn-around, and Data) and one clock cy-
cle for each consecutive double-word transfer (4-1-1-1).

14.3.1 LogiCore Initiator transfer rates

When acting as an Initiator, the LogiCore PCI interface
performs write operations with three clocks to first data
(assuming a Target with fast decode speed), but two cy-
cles between subsequent transfers, resulting in a (3-2-2-
2) transfer rate. This is shown both in Figure 16 and in
Table 17. The Initiator Write transfer rate is limited by
the automatically-inserted Initiator wait-states required
when the LogiCore interface is providing data (see Sec-
tion 13 above). During Initiator Read operations, the
LogiCore interface requires four clock cycles to first data,
one clock cycle between transfers, and two clock cycles
for the last transfer resulting in a (4-1-1-2) transfer rate.

0

20

40

60

80

100

120

140

1 2 4 8 16 32
Double-Word Burst Size

T
ra

ns
fe

r
R

at
e

(M
by

es
/s

ec
)

Ideal PCI Write
Ideal PCI Read
Initiator Write
Initiator Read
Target Write
Target Read

Figure 16. Effects of Read Burst Size and Latency on
PCI Bandwidth.

35 LC-DI-PCIM-C/LC-DI-PCIS-C

The LogiCore PCI interface uses slow address decoding
during Target operations and asserts the TRDY- signal
one clock cycle after IRDY-. These three additional clock
cycles give the LogiCore PCI Interface a maximum Tar-
get Write transfer rate of (5-1-1-1) and a maximum Tar-
get Read transfer rate of (6-2-2-2) in zero wait-state envi-
ronments.

Table 17. PCI Bus Transfer Rates.
Operation Transfer Rate

Ideal PCI Write 3-1-1-1
Ideal PCI Read 4-1-1-1
Initiator Write
 (PCI ß LogiCore)

3-2-2-2

Initiator Read
 (PCI à LogiCore)

4-1-1-2

Target Write
 (PCI à LogiCore)

5-1-1-1

Target Read
 (PCI ß LogiCore)

6-2-2-2

Note that Initiator Read and Target Write operations have
effectively the same bandwidth for burst transfers.

14.4 FIFOs Increase PCI Burst Bandwidth

Although the LogiCore PCI Interface requires additional
clock cycles to access the PCI bus, the actual bandwidth
is primarily determined by the size of the burst transfer.

FIFOs to support PCI burst transfers are efficiently im-
plemented using the XC4000E on-chip RAM feature.
Each XC4000E CLB supports two 16 x 1 RAM blocks.
This corresponds to 32 bits of single-ported RAM or 16
bits of dual-ported RAM, with simultaneous read/write
capability.

There are several methods to build FIFOs optimized for
PCI (see “Implementing FIFOs in XC4000E RAM” appli-
cation note described in Appendix B). The best structure
for most applications is a dual-FIFO design with separate
read and write FIFOs. Adding registers to the input and
output FIFO arrays increases flexibility by supporting
asynchronous user functions.

The flexible architecture of the XC4000E RAM provides
for many specialized, high-performance buffering
schemes, tailored to the user application.

The burst size is set by the FIFO control logic. FIFOs
that are 16 double-words deep fit best into the XC4000E
logic block. There is no performance or density gained
by making the FIFO less than 16 locations deep. FIFOs
deeper than 16 double-words but less than 33 consume
more logic blocks but do not add delay. FIFOs deeper
than 32 double-words consume more logic and add de-
lay.

15. Tips for Building an Initiator Controller

This section contains a few brief statements on building
the Initiator control logic in the user application.

15.1 Start with a “Mission” Statement

An effective method of building the Initiator control state
machine is to write a “mission” statement for the user
application. The next few questions help define some of
the various design issues.

15.2 What Data Transfers are Required

Consider what data must be moved around by the Initia-
tor.

n How big is each transfer? This affects the transfer
counter size and the address counter size.

n What is the source/destination of the transfer? Is it to
memory or I/O?

n How fast can the Target accept or send data?

n How fast can the Initiator provide or receive data?

15.3 What Happens if the Transaction Terminates?

Invariably, a Target will signal some form of termination
condition. How will the Initiator respond? What should it
do?

n The Initiator is obliged to retry an operation over again
if the Target signals a Target Retry condition. Restart
operation from the beginning.

n The Initiator should not retry operation if it detects a
Target Abort or Master Abort condition. This indicates
that the operation is either illegal for the address Tar-
get or that no target exists at the starting address.

n Handling a Disconnect condition is at the discretion of
the Initiator. The Initiator is not required to retry an
operation terminated with a disconnect. Also, han-
dling a Disconnect with data is different than handling
a Disconnect without data.

n The Initiator can also be terminated if the Latency
Timer expires while GNT- is de-asserted. The
TIME_OUT signal indicates when the timer expires.

15.4 Who Goes First?: Arbitrating Between an In-
coming Target Access and a Pending Initiator Trans-
action

When the user application requests the bus for an Initia-
tor operation, it may not actually be granted the bus for
quite some time. In the meantime, another agent may
initiate a target access to the user application. How
should the user application respond?

Does the user application accept the target access? It
may contain important information relevant to the user
application’s pending Initiator transaction.

Denying the other agent access by forcing a Target Retry
will be disastrous in a system with priority-based arbitra-
tion. This initiating agent may keep retrying the transac-
tion because it may have higher priority, and the user
application will never access the bus. However, in a

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 36

round-robin system, forcing a Target Retry is a good way
for the Initiator to perform its pending transaction first. It
can then respond to the target access when it is later re-
tried by the other agent.

16. Controlling Initiator Transactions

Requesting the PCI bus as an Initiator is a multi-step
process. Some of the timing depends on system arbitra-
tion, when the system grants access to the bus, and how
fast the selected Target decodes its address. However,
the setup procedure for an Initiator transfer is simple.
Figure 17 demonstrates a four-word read transfer initi-
ated by the LogiCore PCI Interface. See the example
design in the testbnch schematics.

16.1 Requesting the Bus

Before actually requesting the bus by asserting the
REQUEST signal, the user application should be set up
and ready to perform the transfer.

n Provide the start address for the transaction on the
input to BUFTs driving ADIO[31:0]

MY_ADDR
M_ADDR-

ADIO[31:0]

Active-Low
Output Enable

n Drive the M_CBE[3:0] signals with the appropriate
PCI bus command (listed in Table 4). For example,
assert M_CBE[3:0] =0111b to perform a memory
write operation.

n Drive M_WRDN with the write or read direction control.
In many applications, the M_CBE0 signal can be cap-
tured in a flip-flop enabled while M_DATA is de-
asserted to provide M_WRDN.

n If performing an Initiator Write, have the data avail-
able and ready when the transaction starts. The OE
logic is described in section 10.3.

MY_DATA
OE

ADIO[31:0]

Active-Low
Output Enable

n Assert REQUEST High to indicate that the user appli-
cation requests to become a bus master (Initiator).
Note: The Bus Master Enable flag must be set as bit
2 in the Command Register (CSR2) before the Initia-
tor is able to request the bus. REQUEST should re-
main asserted until the Initiator receives GNT- and
has asserted FRAME-, which is indicated by the
M_ADDR- signal.

Figure 17. LogiCore Initiator Four-Word Burst Memory Read Transfer (note that the LogiCore interface automati-
cally inserts an IRDY- wait-state before the last transfer in a burst transaction).

37 LC-DI-PCIM-C/LC-DI-PCIS-C

n Assert READY High to indicate that data is available
for transfer. For many applications, READY is tied
High because the user application is always ready to
send or receive data. In some other applications,
READY may be delayed until the bus is granted so that
the user application can arbitrate between a pending
Initiator transaction and an incoming Target access.

On the clock cycle after REQUEST is asserted, the Inter-
face asserts its REQ- output Low indicating that it re-
quests the bus. The bus will be granted after an un-
specified time when the system asserts the GNT- input
Low. Other agents are probably active on the bus.

16.2 Starting the Transaction (Address Phase)

After an unspecified time, the system arbiter asserts
GNT- Low. The LogiCore Initiator cannot start the trans-
action until after is receives GNT-, the bus is in the idle
state (IRDY- and FRAME- both de-asserted), and the
Initiator state machine asserts the M_ADDR- signal. This
signal indicates the address phase for the user applica-
tion. The actual address phase on the PCI bus happens
one cycle later, due to internal pipelining. Note that
M_ADDR- overlaps with I_IDLE by a single clock cycle.

When M_ADDR- is asserted,

n Provide address information on ADIO[31:0] via an
internal 3-state buffer (BUFT). M_ADDR-, and possi-
bly other local select logic, is used to enable address
information onto the ADIO[31:0] bus.

16.3 Transferring Data (Data Phase)

On the next cycle, the LogiCore Initiator asserts FRAME-
Low, indicating the beginning of a transaction. The PCI
bus command—generated by the user application on the
previous cycle—appears on the CBE[3:0] pins. The ad-
dress information presented on the ADIO[31:0] internal
data bus now appears on the AD[31:0] PCI bus pins.
This now starts the data phase.

n Drive the M_CBE[3:0] signals with the appropriate
byte enables for the application. For 32-bit data bus
applications, M_CBE[3:0] =0000b.

n Setup to send or receive data via the internal
ADIO[31:0] bi-directional bus.

n Each valid Initiator transfer is indicated by the
DATA_VLD signal which is asserted when the Initiator
state machine is in the M_DATA state and both IRDY-
and TRDY- are asserted Low.

16.4 Completing the Transfer (COMPLETE)

The user application signals the end of an Initiator trans-
action with the COMPLETE signal. Once asserted,
COMPLETE must be held asserted through the end of the
M_DATA state.

The time to assert COMPLETE depends on whether the
transaction is a single or burst data transfer. See the
design example shown in the testbnch.3 schematic.

16.4.1 Single Transfers

If the Initiator is only sending or receiving a single data
word, assert COMPLETE coincident with asserting
REQUEST. Again, hold COMPLETE through the end of the
M_DATA state.

16.4.2 Burst Transfers

n Assert COMPLETE High coincident with the next-to-last
data transfer and hold it through the end of the
M_DATA state. See the testbnch.3 schematic for
an example.

The logic generating COMPLETE can be fairly complex.
As described above, single transfers can assert
COMPLETE immediately, if there is a REQUEST pending.
For burst transfers, COMPLETE is asserted during the
Next-to-Last transfer. Typically, a transfer counter tracks
these values. The last state is called n, the next-to-last is
called n-1, etc. The actual decoding method depends on
the type of transfer counter used.

The second-to-last transfer is only decoded during burst
reads because Initiator Read operations occur at full
burst rate. COMPLETE would be asserted as soon as the
second-to-last transfer completes, indicated by
DATA_VLD. Watch the timing on the DATA_VLD path.

The next-to-last transfer is asserted one clock cycle after
entering the M_DATA state. This is indicated in Table 18
as MDATAQ (MDATAQ := M_DATA).

If the transfer counter is ever in the last cycle, COMPLETE
is asserted immediately and unconditionally.

Table 18. Asserting COMPLETE.
Transfer

Cycle Decod
e

Read
(M_WRDN=0)

Write
(M_WRDN=1)

Last n REQUEST REQUEST

Next-to-Last n-1 MDATAQ MDATAQ
Second-to-Last n-2 DATA_VLD

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 38

17. Design Validation Process

The LogiCore PCI Interface serves as a foundation for
PCI designs. The interface is validated via extensive
simulation. Further user testing of the LogiCore PCI In-
terface is accomplished using simulation or actual testing
of a programmed device.

The following design example (testinit.1) demon-
strates how to properly install and validate the LogiCore
PCI Interface design environment. The design example
includes a specially-built user application to help in PCI
protocol testing. Each step in this four-step process in-
troduces specific aspects of the design and assures
proper operation of the complete design environment.

1. Setup and validate the design environment

2. Functional simulation

3. FPGA processing

4. Timing simulation

Completing each of the above steps with “known good”
results simplifies the learning curve and validates the de-
sign environment.

Follow this step-by-step example, at least once. This
helps to develop a good understanding of the tools and
the overall design process. This also forms a develop-
ment path that can be referenced anytime in the design
process to validate PCI compliant protocol or timing. Af-
ter successfully completing the design process, iterative
design techniques help integrate the LogiCore PCI Inter-
face with custom user applications.

A typical design begins by customizing the LogiCore PCI
Interface (i.e.—selecting Target-Only or Target/Initiator,
configuring the Base Address Registers, etc.) and re-
running the functional simulation. Once complete, the
user application is integrated with the LogiCore PCI Inter-
face. Verifying PCI protocol compliance on an iterative
basis simplifies the debug process and accelerates
FPGA development time.

IMPORTANT!

!

Due to the complexity of the PCI inter-
face, Xilinx can only guarantee PCI
compliance of the LogiCore PCI Inter-
face as provided, and cannot provide
any guarantees for user designs.

17.1 Step 1: Validate VIEWlogic Design Environ-
ment

The Release Notes provide instructions on how to install
the LogiCore PCI Interface. To verify proper installation,
invoke VIEWdraw and create a new project pointed at the
example files in the testbnch directory. Make sure that
all of the libraries are setup correctly in viewdraw.ini
file. Then open the top-level schematic named tes-
tinit.1 . Verify that everything is visible and appears
similar to the schematic shown in Figure 3 (it will not ap-
pear exactly the same because of the special user appli-

cation). The schematic window can be left open to dis-
play logic levels during simulation.

The testinit.1 design demonstrates the overall de-
sign structure and how to compile and test your own ap-
plication. The overall design structure appears in Figure
10. Only the five top-level schematics and the PCI-ROM
schematic are in the design directory. The remainder of
the PCI interface design resides in a library called
LC_PCI, which must be referenced in the view-
draw.ini file.

In this example design, the user application is a small
function required to test PCI Initiator protocol compliance.
This example application is called testbnch.1 , .2 , .3 ,
and .4 .

The detailed steps to validate the design environment are
as follows:

1. Create and set the VIEWlogic project directory to
point at the LogiCore PCI Interface design in the
testbnch directory.

2. Edit the viewdraw.ini file to point to the XC4000E
design libraries and to the lc_pci library containing
the LogiCore PCI Interface design. An example file,
example.ini, is included for reference.

3. Open the top-level design (testinit.1) and push
into the first level of hierarchy.

4. Visually check the schematic. If the design appears
strange or if symbols are missing (empty white
boxes), recheck the viewdraw.ini file so that it
points to the correct XC4000E and LC_PCI libraries.

5. Create the lower-level .wir files, by ‘checking’ the
project.

 check -p

17.2 Step 2: Validate Functional Simulation Envi-
ronment

The testinit.1 design is a PCI design for verifying
functional simulation only. The testinit.1 design is
not actually compilable through the Xilinx design soft-
ware, though the pci_test.1 design is compilable.
The testinit.1 design contains a Target functional
model, implemented in schematic form, to which the
LogiCore Initiator performs read and write operations.

17.2.1 The PCI protocol testbench

Figure 18 shows the major components in the PCI proto-
col testbench design (testinit.1). These include the
LogiCore PCI interface (lc_pci_i), and the Initiator
testbench user application (testbnch). These two com-
ponents are also in the compilable pci_test design,
shown in the shaded box in Figure 10.

The Target functional model (faketarg) has been spe-
cially designed to respond according to the scenarios
described in the PCI-SIG Compliance Checklist . During

39 LC-DI-PCIM-C/LC-DI-PCIS-C

protocol testing, the checklist requires the Target to re-
spond in ways that a real Target design would not—such
as forcing invalid parity, responding with various
DEVSEL- decode speeds, etc.

The simple arbiter (fakearb) merely asserts GNT- after
the LogiCore interface asserts its REQ- pin. For most of
the tests, GNT- is asserted for two clock cycles, then de-
asserted until the next request. When testing Bus Park-
ing (Scenario 1.13), GNT- is over-driven by the VIEWsim
command file. There is also a test in Scenario 1.14
where GNT- is only asserted for one cycle.

LogiCore
PCI

Interface

Initiator
Protocol
Test User

Application

lc_pci_i testbnch

Target
Functional

Model

faketarg

Simple
Arbiter

fakearb

pci_test

Figure 18. PCI Protocol Testbench.

Design Note : For proper simulation results, FRAME-,
DEVSEL-, STOP-, IRDY-, and TRDY-
are connected to PULLUP resistors
symbols. These pullup resistors model
those found on a PCI motherboard. The
SCENARIO and TEST buses on the
schematic indicates the protocol sce-
nario and sub-test number during simu-
lation.

17.2.2 Create the VSM file

After successfully executing Check, invoke the VSM utility
on the entire design. This creates a single .vsm file rep-
resenting the entire design.

IMPORTANT!

!

Do not use XSimMake to create the
design. When using ProFlow, do not
check the “Design contains X-BLOX,
RAM, ROM or X-ABEL” box.

The VSM utility should also finish without any warning or
error messages. With this complete, invoke the VIEWsim
simulator on the testinit design.

17.2.3 Invoke VIEWsim and execute setup command
file

At the SIM> prompt, type the name of the top-level
VIEWlogic simulation command file called
testbnch.cmd . For design validation purposes, this
command file initializes the VIEWsim interface and in-
vokes the VIEWtrace window. This command file sets up
the signals that appear in the trace window, initializes the
design, and then calls other PCI cycle command files to
initialize the LogiCore interface’s base registers and
command register, as shown in Figure 19. Table 20
summarizes the various setup and top-level command
files.

The setup procedures perform the following steps:

n Setup the LogiCore PCI Interface’s Command Regis-
ter to enable parity error and system error responses,
to enable bus mastering (Initiator functionality) and to
enable the Target interface to respond to memory and
I/O commands.

n Reset the LogiCore interface’s status register.

n Write all ones to both Base Address Register 0 and to
Base Address Register 1.

n Loads the Latency Timer Register with 255, the
maximum value. The prevents the latency counter
from expiring during a transaction.

Table 19. The LogiCore PCI Interface Design Process
Process Stage Purpose or Goal Required Inputs:

Functional Simulation Validate design environment
Validate PCI functional compliance

Reference Design: ‘testinit ’
- \sch PCI schematic files
 - \sym PCI symbol files
 - Sample *.cmd simulation command files
 - *.ini files

FPGA Processing Process reference design into an FPGA
 - Xdelay report validates PCI timing

Functionally-checked reference design
Use ‘pci_test ’ design
 - *.cst constraints file
 - *.lca guide file

Timing Simulation PCI compliance timing verification xnfba.xnf

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 40

17.2.4 Execute a full test

After executing the testbnch.cmd command file, vari-
ous PCI protocol compliance tests can be executed. A
full test (fulltest.cmd) requires about 2 hours to exe-

cute on a SPARC 10 platform. Executing only the 14 Ini-
tiator test scenarios (inittest.cmd) requires about 1
hour as does executing the 14 Target test scenarios
(targtest.cmd).

The command files executed by the Initiator test are
listed in Table 20 while the supported Target tests are
listed in Table 21. Note that both tables list the corre-
sponding test scenario number as listed in the PCI-SIG
Compliance Checklist . The scenario and test number
for each vector file is displayed at the top of the wave-
form. For example, when test scenario 1.8 is running, the
waveform displays the value ‘08’ for the signal listed as
SCENARIO and a value for TEST, indicating the sub-test.
These values match those used to describe various test
scenarios in both the PCI-SIG Compliance Checklist
and in the LogiCore Protocol Compliance Checklist .
The Xilinx-created VIEWsim testbench includes extra
scenarios and tests not specified in the PCI-SIG Compli-
ance Checklist .

17.2.5 Execute an individual test scenario

The full test requires nearly two hours to execute. During
the course of debugging, running only a specific test sce-
nario will speed development. The top-level command
files call sub-files when executing a specific test scenario.
Note: All setup command files display zero for the TEST num-
ber.

| XILINX LOGICORE PCI PROTOCOL COMPLIANCE TEST SUITE
| ##
| (c) Copyright 1996 by Xilinx , Inc. All rights reserved
| .
| Based on PCI Compliance Checklist , Revision 2.0b , and on the
| proposed , unratified Revision 2.1 draft published by
| the PCI Special Interest Group (PCI-SIG) . This test suite is for
| functional protocol testing only. On a placed and routed design ,
| some of the internal nodes will be partitioned into a CLB , and
| therefore not viewable.
l

l

l

| .
| SELECT ONE OF THE FOLLOWING INITIATOR COMPLIANCE TESTS
TO RUN:
| --
| .
| inittest: Runs all Initiator test scenarios (1.1 to 1.14) (1 hour)
| targtest: Runs all supported Target test scenarios (2.1 to 2.14) (1 hour)
| fulltest: Runs both Initiator and Target test scenarios (2 hours)

Figure 19. Top-level Command File (testbnch.cmd)
Output.

Table 20. VIEWsim Testbench Setup Command Files.
Test
No.

Filename
*.cmd Test Description

0 testbnch Top-level test vector command file for
testinit design. Calls various sub-
files. The Scenario number and Test
number for the various sub-files is dis-
played at the top of the waveform.

0 fulltest Run all Initiator and Target protocol test
scenarios. Approximately 2 hours run
time.

0 inittest Run all 14 Initiator protocol test scenar-
ios. Approximately 1 hour run time.

0 targtest Run applicable Target protocol test sce-
narios. Approximately 1 hour run time.

0 testlist List the available high-level tests. Dis-
played in VIEWsim window

0 initlist List the available Initiator sub-tests. Dis-
played in VIEWsim window

0 targlist List the available Target sub-tests. Dis-
played in VIEWsim window

0 wr_cmdr Setup Command/Status Register, do not
set Enable Bus Master bit

0 wr_mcmdr Setup Command/Status Register, set
Enable Bus Master bit. Enables Initiator

0 wr_f_br0 Write FFFFFFFF to Base Register 0
0 wr_f_br1 Write FFFFFFFF to Base Register 1
0 clr_stat Clears the read/write locations in the

Status Register. Leaves contents of the
Command Register.

0 wr_lt2 Write Latency Timer Register with 2.
Latency timer will expire after 3 cycles.

0 wr_lt8 Write Latency Timer Register with 8.
Latency timer will expire after 9 cycles.

0 wr_lt256 Write Latency Timer Register with 255.
Latency timer will expire after 256 cycles.
(maximum value)

Table 21. Initiator Protocol Tests.
Test
No.

Filename
*.cmd Test Description

1.1 ts_1_1 Initiate transfer to various speed slaves
using different commands.

1.2 ts_1_2 Target abort conditions received during
single data transfers.

1.3 ts_1_3 Target retry conditions received during
single data transfers.

1.4 ts_1_4 Target disconnect conditions received
during single data transfers.

1.5 ts_1_5 Target abort conditions received during
multi-data phase transfers.

1.6 ts_1_6 Target retry conditions received during
multi-data phase transfers.

1.7 ts_1_7 Target disconnect conditions received
during multi-data phase transfers.

1.8 ts_1_8 Data transfers while the Target inserts
different TRDY- wait-state transfers.

1.9 ts_1_9 Parity errors detected during single data
transfers.

1.10 ts_1_10 Parity errors detected during multi-data
phase transfers.

1.11 ts_1_11 Premature termination when Latency
Timer expires.

1.12 ts_1_12 Target Lock.
1.13 ts_1_13 Bus parking tests. Check that AD bus,

CBE bus and PAR signal driven when
GNT- asserted with no request pending.

1.14 ts_1_14 Test various system arbitration issues.
Coincident GNT- de-assertion/FRAME-
assertion. Single cycle GNT-. Reset Bus
Master Enable bit.

41 LC-DI-PCIM-C/LC-DI-PCIS-C

For example, to run the Initiator test scenario 1.8, exe-
cute the sub-file called ts_1_8.cmd as shown in Table
21.

To list the Initiator test scenario command files, execute
initlist.cmd . To list the Target test scenario com-
mand files, execute targlist.cmd .

17.2.6 Initiator Protocol Tests

Table 21 shows the various sub-files used in the full Ini-
tiator protocol compliance test. Test scenario 1.8
(ts_1_8.cmd) is a good general test of basic Initiator
functionality. It performs a series of four double-word
transfers while the addressed Target inserts various
TRDY- wait-state patterns.

Note that the shaded table entry indicates a function that
is not supported.

17.2.7 Target Protocol Tests

Table 22 shows the various supported sub-files used in
the full Target protocol compliance test. Test scenario
2.13 (ts_2_13.cmd) is a good general test of basic Tar-
get functionality. It performs a series of three double-
word transfers while the bus master (Initiator) inserts
various IRDY- wait-state patterns.

The PCI-SIG Compliance Checklist does not contain a
2.14 scenario. This is a specially-added Xilinx test to
evaluate various target termination conditions, including
the KEEPOUT function.

Note that the shaded table entries indicate functions are
is not supported or tests that are not implemented.

Table 22. Supported Target Protocol Tests.
Test
No.

Filename
*.cmd Test Description

2.1 ts_2_1 Interrupt cycles.
2.2 ts_2_2 Special cycles.
2.3 ts_2_3 Address and data parity errors during

special cycles.
2.4 ts_2_4 Illegal byte-enables during I/O cycles.
2.5 ts_2_5 Target ignores reserved commands.
2.6 ts_2_6 Configuration cycles.
2.7 ts_2_7 Address and data parity errors during I/O

cycles.
2.8 ts_2_8 Address and data parity errors during

configuration cycles.
2.9 ts_2_9 Memory cycles.

2.10 ts_2_10 Address and data parity errors during
memory cycles.

2.11 ts_2_11 Fast back-to-back transfers.
2.12 ts_2_12 Target Lock.
2.13 ts_2_13 Target responds to data transfers while

Initiator inserts IRDY- wait-states.
2.14 ts_2_14 Xilinx-only tests to verify correct func-

tionality of various Target termination
conditions including Target Retry, Dis-
conect, Abort, and Keepout.

17.2.8 Command Summary

1. Create a functional simulation model for the design.
 vsm testinit

2. Invoke the VIEWsim simulator
 viewsim testinit

3. Execute the testbench setup command file
 sim testbnch.cmd

4. Execute a PCI test vector command file
 fulltest

Design Note : A waveform and text log file for a com-
plete VIEWsim testbench compliance
run is stored in the test_out sub-
directory on the CD-ROM. Use VIEW-
trace to view the comply.wfm waveform
file.

17.3 Step 3: Validate FPGA Design Environment

Process the compilable design, pci_test.1 , through
the Xilinx software. XACT version 6.0.1/5.2.1 is required,
along with the XC4013E speeds file (4013e.spd).

The protocol test design, testinit.1 , is not compilable
because it contains extra functional models (shown on
testinit.2) that are not part of the actual FPGA de-
sign. The compilable design, pci_test.1 , is nearly
identical to testinit.1 except that does not contain the
extra functional models.

The design must be compiled with specific options to
guarantee PCI performance. These options include
specifying the placement and routing guide file, the con-
straints file, the router effort, and the placer effort. Also,
the bitstream compiler (MakeBits) options must be set.
The LogiCore PCI interface should use the XC4000E’s
fast configuration capability.

17.3.1 Compiling the pci_test.1 design.

IMPORTANT!

!

PC-based users must manually set the
PPR constriants file and guide file op-
tions. This is due to certain incompat-
bilities between the Windows-based
and DOS-based design manager pro-
grams.

1. Invoke the Xilinx Design Manager (XDM).
 xdm

2. Set the various compiler control options by reading
the XDM profile settings. These settings instruct the
XNFPREP and PPR programs to use the proper
constraints file (/cst_file/i13p208.cst for a
Target/Initiator design, /cst_file/t13p208.cst
for a Target-only design). It also instructs PPR to use
the proper guide file (/guide/i13p208.lca for a
Target/Initiator design,./guide/t13p208.lca for a

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 42

Target-only design). It sets PPR’s routing and placer
effort controls. Furthermore, it instructs the MakeBits
bitstream compiler to use the fast configuration mode
available on the XC4000E and to tie unused logic
and nets during the compilation process.

 Profile àà Readprofile

 The settings defined in the xdm.pro profile may re-
quire modification in other designs. To view the cur-
rent setting, select the following options from the
XDM menus

 Profile àà Settings

3. Run XMAKE on the pci_test.1 design. This proc-
ess will require an estimated one to four hours of
computer run time, depending on the platform and
the processor speed.

 XMake àà Done àà pci_test.1 àà

 Then, select the desired compilation level. Selecting
‘Make bistream ’ runs through the entire compila-
tion process. After executing XMake the first time,
you can select the pci_test.mak ‘make’ file. The
‘make’ file will only re-execute any necessary steps
and not re-compile every file.

Design Note : During processing, any unused logic is
trimmed from the design. The trimmed
logic is reported in the *.prp report file
generated by xnfprep during the
xmake process. The trim report can be
huge. The Perl utility called trim clari-
fies and reduces the trim report. The
Perl program is required to execute the
Perl utility (see Appendix B). Execute
the Perl script by typing

perl perl/trim <in>.prp <out>.prp (Unix)

perl perl\trim <in>.prp <out>.prp (DOS)

17.3.2 Check for timing violations

After the design has been placed and routed, verify that
all of the timing specifications have been met using the
XDelay timing calculator. Check for any failed specifica-
tions.

1. Create a timing report of any failed XACT-
Performance timing constraints using Xdelay. Invoke
the XDelay program from XDM.

 Verify àà Xdelay àà *

2. Read in the design.
 Design àà Design pci_test

3. Create a report file of any missed performance pa-
rameters.

 Misc àà Report pci_top.xrp

 Xdelay-TimeSpec àà -FailedSpec

4. Check the report file for any failed timing constraints.
Occasionally, some of the timing paths may fail to

meet their specifications. Inspect the failed path to
see that it is a valid path for the design. PPR and
XDelay perform static timing analysis and may report
“false” paths that are not actually part of the critical
path. If the failed path appears to be valid, and if the
path fails by a small margin, simply rerun PPR. PPR
uses a pseudo-random placing algorithm and may
product better results on the next iteration.

17.4 Step 4: Validate Timing Simulation Environment

Validating timing can be accomplished using two meth-
ods. The first is using the XDelay static timing calculator.
XDelay is easier and faster than validating timing through
simulation.

However, timing simulation is required in some develop-
ment environments. It is important to maintain separate
directories for design and for timing verification. The de-
sign directory is where all changes are made using the
VIEWdraw, VIEWsim, and Xilinx software.

PCI timing verification requires a separate directory
structure to ensure that the tools automatically process
the correct .wir files. Schematic files should only be
temporarily placed in the timing verification directory for
debug purposes.

The following list describes the correct installation and
checkout procedures for the LogiCore PCI Interfaces.

Due to some I/O modeling issues, XSimMake should not
be used to create the back-annotated simulation file. The
following steps create the correct set of files.

1. Process the .lca file with lca2xnf using the -g
option to create an .xnf file.

 lca2xnf -g pci_test.lca pci_test.xnf

 It is important that the .lca file has embedded timing
information, which is generated during the XMake
process by default. Alternatively, you may use

 xdelay -d -w pci_test.lca

 which adds timing data and over-writes the .lca file.

2. Run the model_io Perl script, (model_io version
2.01 or higher should be used). This corrects known
conservative modeling values for the setup/hold and
clock-to-output timing of the I/O flip-flops. The Perl
script provides the guaranteed data book values in
the final .xnf file (see the XC4000E Technical Data
data sheet). The Perl program version 5.00 or higher
is required to execute the model_io script, (see
Appendix B: Resources).

 (Unix)
perl perl/model_io pci_test.xnf model_io.xnf

 (DOS)
perl perl\model_io pci_test.xnf model_io.xnf

43 LC-DI-PCIM-C/LC-DI-PCIS-C

3. Run xnfba . This updates the .xnf file generated by
model_io with timing information.

 xnfba pci_test.xff model_io.xnf (cont’d)
 -o pci_time.xnf

4. Generate the required design wire files using xnf2wir.
The output filename from this process must match
your top-level design name. The resulting wire files
contain the fully back-annotated timing information.
This is required by VIEWsim to create the timing
model.

 xnf2wir pci_time wir/pci_time (Unix)

 xnf2wir pci_time wir\pci_time (DOS)

5. Create the timing simulation model.
 vsm pci_time

6. Invoke the VIEWsim simulator.
 viewsim pci_time

7. Execute the PCI test vector command file.
 sim testbnch.cmd

 Note that the testbnch.cmd file was originally cre-
ated for PCI protocol functional timing. Some of the
signals that it references are not visible in a com-
piled, back-annotated design. VIEWsim will issue
messages indicated that it cannot find these signals.
Also, the Initiator tests will not function correctly in the
compiled design because the tests require the
faketarg Target functional model.

18. Compliance Process

PCI protocol compliance of the Xilinx Target LogiCore
PCI Interface was tested according to the PCI Compli-
ance Checklist, Revision 2.0b published by the PCI
Special Interest Group (PCI-SIG). Additional tests were
added to test functions not covered by the PCI-SIG
checklist, including how the Target responds in various
target termination conditions and how the Target re-
sponds to the KEEPOUT signal. The results are summa-
rized in LogiCore PCI Interface Compliance Checklist
(v2.1) available from Xilinx (see Appendix B: Resources)
The LogiCore PCI Interface has been tested using the
workstation-based Synopsys VSS VHDL simulator and
Powerview 5.3 VIEWsim simulator. Equivalent PC tools
are available with Workview Office 7.2 (and later). The
PCI bus simulation model testbench is available from
VirtualChips, (see Appendix B: Resources).

The design files for the interface between the VHDL test
bench and the PCI LogiCore Interface design are avail-
able from Xilinx upon request. Send E-mail to
pci@xilinx.com , with ‘Request ViewLogic VHDL Inter-
face’ in the subject header.

The outputs of these compliance tests are stored in the
/test_out sub-directory on the CD-ROM.

Table 23. Compliance test output files.
File Name Description

comply.log Log file created by the Xilinx
VIEWsim test bench.

comply.wfm VIEWtrace waveform file created by
the VIEWsim test bench. View
waveform using VIEWtrace.

init_1_1.log Log file created by VirtualChips Initia-
tor tests.

targ_1_1.log Log file created by VirtualChips Tar-
get tests.

mailto:pci@xilinx.com

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 44

19. Appendix A: Pinout, Configuration

19.1 Layout Considerations

Xilinx devices support the PCI-SIG suggested pinout for
add-in cards as well as an FPGA optimized pinout for
embedded applications. The pinout shown in Table 24
follows the PCI-SIG suggested pinout and aligns the PCI
data path (ADIO[31:0]) along the horizontal long lines
in the FPGA. The user applications data bus (D[31:0])
also aligns with the horizontal Longlines.

The horizontal Longlines support internal 3-state busses.
Various registers, such as the Base Address Registers,
are aligned vertically, in columns. The schematic con-
tains topographical representations of the XC4013E indi-
cating how functions are placed on the device.

This pinout is developed specifically for the XC4013E
device in the 208-pin PQFP package.

19.2 Pinout Table

Table 24 lists the PCI pin assignment for the 208-pin
PQFP package. For each pin, both the PCI function and
the fundamental device pin function are listed. Those
shown in bold italics are dedicated pins for configuring
the FPGA device using one of the serial configuration

modes. Pins without a PCI function listed are available
as additional user I/O. Note: If there are conflicts be-
tween Table 24 and the constraints file, the constraints
file has precedence.

19.3 Configuration Mode

The LogiCore PCI Interface is designed to use Serial
Master Mode or Slave Mode for configuring the device.
An external serial configuration PROM is required for Se-
rial Slave Mode.

Using the XC4000E’s fast configuration mode is recom-
mended to minimize the FPGA power-up configuration
time. The fast mode is set as part of the MakeBits op-
tions in the XDM profile read in during the design compi-
lation phase.

Please refer to the XC4000E Technical Data data sheet
for additional information.

Slave mode is useful during debugging. However, the
PCI system needs to be held reset while the FPGA’s bit-
stream is loaded.

http://www.xilinx.com/products/fpgaspec.htm#XC4000

45 LC-DI-PCIM-C/LC-DI-PCIS-C

Table 24. Example FPGA Pinout for the XC4013EPQ208 Package (pinout defined in the *.cst constraints file)
Pin
No.

PCI
Function Pin Function

P1 N.C. N.C.
P2 GND GND
P3 N.C. N.C.
P4 CLK I/O, PGCK1 (A16)
P5 I/O (A17)
P6 AD23 I/O
P7 AD22 I/O
P8 TDI I/O, TDI
P9 TCK I/O, TCK
P10 AD21 I/O
P11 AD20 I/O
P12 AD19 I/O
P13 AD18 I/O
P14 GND GND
P15 AD17 I/O
P16 AD16 I/O
P17 TMS I/O, TMS
P18 CBE2 I/O
P19 GNT- I/O
P20 FRAME- I/O
P21 IRDY- I/O
P22 TRDY- I/O
P23 DEVSEL- I/O
P24 STOP- I/O
P25 GND GND
P26 VCC VCC
P27 LOCK- I/O
P28 PERR- I/O
P29 SERR- I/O
P30 PAR I/O
P31 REQ- I/O
P32 CBE1 I/O
P33 AD15 I/O
P34 AD14 I/O
P35 AD13 I/O
P36 AD12 I/O
P37 GND GND
P38 AD11 I/O
P39 AD10 I/O
P40 AD9 I/O
P41 AD8 I/O
P42 I/O
P43 I/O
P44 I/O
P45 I/O
P46 I/O
P47 I/O, SCGK2
P48 M1 O (M1)
P49 GND GND
P50 M0 I (M0)
P51 N.C. N.C.
P52 N.C. N.C.
P53 N.C. N.C.
P54 N.C. N.C.
P55 VCC VCC
P56 M2 I (M2)

Pin
No.

PCI
Function Pin Function

P57 I/O, PGCK2
P58 HDC I/O (HDC)
P59 CBE0 I/O
P60 AD7 I/O
P61 AD6 I/O
P62 LDC- I/O (LDC-)
P63 AD5 I/O
P64 AD4 I/O
P65 AD3 I/O
P66 AD2 I/O
P67 GND GND
P68 AD1 I/O
P69 AD0 I/O
P70 I/O
P71 I/O
P72 I/O
P73 I/O
P74 I/O
P75 I/O
P76 I/O
P77 INIT- I/O (INIT-)
P78 VCC VCC
P79 GND GND
P80 I/O
P81 I/O
P82 I/O
P83 I/O
P84 I/O
P85 I/O
P86 I/O
P87 I/O
P88 I/O
P89 I/O
P90 GND GND
P91 I/O
P92 I/O
P93 I/O
P94 I/O
P95 I/O
P96 I/O
P97 I/O
P98 I/O
P99 I/O
P100 I/O, SGCK3
P101 GND GND
P102 N.C. N.C.
P103 DONE DONE
P104 N.C. N.C.
P105 N.C. N.C.
P106 VCC VCC
P107 N.C. N.C.
P108 PROGRAM- PROGRAM-
P109 RST- I/O (D7)
P110 I/O, PGCK3
P111 USER_D0 I/O
P112 USER_D1 I/O

Pin
No.

PCI
Function Pin Function

P113 USER_D2 I/O (D6)
P114 USER_D3 I/O
P115 USER_D4 I/O
P116 USER_D5 I/O
P117 USER_D6 I/O
P118 USER_D7 I/O
P119 GND GND
P120 USER_D8 I/O
P121 USER_D9 I/O
P122 USER_D10 I/O (D5)
P123 USER_D11 I/O (CS0)
P124 USER_D12 I/O
P125 USER_D13 I/O
P126 USER_D14 I/O
P127 USER_D15 I/O
P128 I/O (D4)
P129 I/O
P130 VCC VCC
P131 GND GND
P132 I/O (D3)
P133 I/O (/RS)
P134 USER_D16 I/O
P135 USER_D17 I/O
P136 USER_D18 I/O
P137 USER_D19 I/O
P138 USER_D20 I/O (D2)
P139 USER_D21 I/O
P140 USER_D22 I/O
P141 USER_D23 I/O
P142 GND GND
P143 USER_D24 I/O
P144 USER_D25 I/O
P145 USER_D26 I/O
P146 USER_D27 I/O
P147 USER_D28 I/O (D1)
P148 USER_D29 I/O (RCLK,

RDY/BUSY)
P149 USER_D30 I/O
P150 USER_D31 I/O
P151 DIN I/O (D0, DIN)
P152 DOUT I/O, SGCK4 (DOUT)
P153 CCLK CCLK
P154 VCC VCC
P155 N.C. N.C.
P156 N.C. N.C.
P157 N.C. N.C.
P158 N.C. N.C.
P159 TDO O, TDO
P160 GND GND
P161 I/O (A0, WS)
P162 I/O, PGCK4 (A1)
P163 I/O
P164 I/O
P165 I/O (CS1, A2)
P166 I/O (A3)
P167 I/O

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 46

Pin
No.

PCI
Function Pin Function

P168 I/O
P169 I/O
P170 I/O
P171 GND GND
P172 I/O
P173 I/O
P174 I/O (A4)
P175 I/O (A5)
P176 I/O
P177 I/O
P178 I/O
P179 I/O
P180 I/O (A6)
P181 I/O (A7)
P182 GND GND
P183 VCC VCC
P184 I/O (A8)
P185 I/O (A9)
P186 I/O
P187 I/O
P188 I/O
P189 I/O
P190 I/O (A10)
P191 I/O (A11)
P192 AD31 I/O
P193 AD30 I/O
P194 GND GND
P195 AD29 I/O
P196 AD28 I/O
P197 AD27 I/O
P198 AD26 I/O
P199 AD25 I/O (A12)
P200 AD24 I/O (A13)
P201 CBE3 I/O
P202 I/O
P203 IDSEL I/O (A14)
P204 I/O, SGCK1 (A15)
P205 VCC VCC
P206 N.C. N.C.
P207 N.C. N.C.
P208 N.C. N.C.

47 LC-DI-PCIM-C/LC-DI-PCIS-C

20. Appendix B: Resources

Design Note : Load the file called /web/pci.htm on
the CD-ROM into your Internet browser
for easy access to the latest PCI infor-
mation referenced below.

20.1 PCI Special Interest Group (PCI-SIG) Publica-
tions

The PCI-SIG publishes various PCI specifications and
related documents. Most publications cost US$25 plus
applicable shipping charges.

n PCI Local Bus Specification , Rev. 2.1

n PCI Compliance Checklist v2.0b and unratified v2.1
draft (available via the World-Wide Web)

n PCI System Design Guide v1.0

Contact:

PCI Special Interest Group
2575 NE Kathryn St. #17
Hillsboro, OR 97214
TEL: 1-800-433-5177 (within USA)
TEL: 1-503-693-6232 (worldwide)
FAX: 1-503-693-8344
E-Mail: info@pcisig.com
WEB: http://www.pcisig.com

20.2 PCI and FPGA Design Consultants

HighGate Design implemented a large portion of the
LogiCore PCI Target interface. Their extensive Xilinx
FPGA design experience helped the LogiCore PCI Inter-
face meet the stringent PCI timing requirements.

Contact:

HighGate Design, Inc.
12380 Saratoga/Sunnyvale Road
Suite 8
Saratoga, CA 95070
TEL: 1-408-255-7160
FAX: 1-408-255-7162
E-mail: highgate@highgatedesign.com

20.3 PCI Bus Simulation Model

The VirtualChips PCI bus test environment used for
compliance testing is provided by Phoenix Technologies.

Contact:

VirtualChips (Phoenix Technologies)
2107 N. First St., Suite 100
San Jose, California 95131
TEL: 1-888-4V CHIPS (1-888-482-4477)
FAX: 1-408-452-0952
E-mail: sales@vchips.com
WEB: http://www.vchips.com

20.4 PCI Reference Books

There are many reference books available on PCI. The
following are a few that the product development team
found useful.

n PCI System Architecture by Tom Shanley and Don
Anderson. ISBN 1-881609-08-1. An excellent general
reference book on PCI. This book is included with
the LogiCore PCI product.

Contact:

Mindshare Press
2202 Buttercup Dr.
Richardson, TX 75082
TEL: 1-214-231-2216
FAX: 1-214-783-4715

Distributed by:

Computer Literacy Bookshops, Inc.
P.O. Box 641897
San Jose, CA 95164
TEL: 1-408-435-0744
FAX: 1-408-435-1823
E-mail: info@clbooks.com
WEB: http://www.clbooks.com

n PCI Hardware and Software Architecture & Design
by Edward Solari & George Willse. ISBN 0-929392-
19-1. Everything that you ever wanted to know about
PCI systems design, and more.

Contact:

Annabooks
11848 Bernardo Center Drive
Suite 110
San Diego, CA 92128
TEL: 1-619-673-0870

1-800-462-1042
FAX: 1-619-673-1432

20.5 Xilinx Documents

The following documents are available in Adobe Acrobat
format in the /docs sub-directory on the CD-ROM.

n LogiCore PCI Interface Protocol Checklist (PCI-
SIG, Rev. 2.1). Complete protocol checklist following
the same style as the PCI-SIG checklist. See the
/docs/pcicompl.pdf Acrobat file on the CD-ROM.

n XC4000 Series Technical Data . Data sheet for
XC4000E and XC4000EX FPGA devices. See the
/docs/xc4000e.pdf Acrobat file on the CD-ROM.

n Implementing FIFOs in XC4000E . Application note.
P/N: 0010273-01. See the /docs/xapp053.pdf
Acrobat file on the CD-ROM.

http://www.pcisig.com
http://www.clbooks.com
http://www.vchips.com
mailto:info@pcisig.com
mailto:highgate@highgatedesign.com
mailto:sales@vchips.com
mailto:info@clbooks.com
http://www.xilinx.com/products/fpgaspec.htm#XC4000
http://www.xilinx.com/xapp/xapp053.pdf
http://www.pcisig.com/specs.html

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 48

n Synchronous and Asynchronous FIFO Designs .
Application note. See the /docs/xapp051.pdf Ac-
robat file on the CD-ROM.

Contact:

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
TEL: 1-408-559-7778
FAX: 1-408-879-4442
E-mail: pci@xilinx.com
WEB: http://www.xilinx.com

IMPORTANT!

!

Be sure to visit the Xilinx WebLINX web
site for the latest information and appli-
cation notes using the LogiCore PCI
interface.

20.6 LogiCore User’s VIP Web Site

The LogiCore User’s VIP web site provides a quick and
convenient way to obtain the latest updates, documenta-
tion, design tips, application notes, and utilities. The VIP
web site is open to registered LogiCore users. To regis-
ter, point your Internet browser software to:

www.xilinx.com/products/logicore/logicore.htm

20.7 Perl Software

The LogiCore PCI Interface uses two Perl software utili-
ties. These utilities require Perl version 5.00 or later.

n trim removes any known warnings from the trimming
report for clarity.

n model_io , version 2.01 or later, modifies the overly
conservative timing data on device input and output
flip-flops. The modified value match the guaranteed
values specified in the XC4000E data sheet.

Perl source is provided for these utilities. The Perl execu-
table required to execute these utilities is not provided on
the CD-ROM. Perl is widely available, at no cost, via the
World Wide Web. Perl is also available on a wide range
of platforms.

The easiest method to download the Perl source is to
visit the Perl home page at

http://www.perl.com

From there, the CPAN (Comprehensive Perl Archive
Network) contains links to various Perl FTP sites around
the world. The Perl program ported to various computer
platforms can be found in a ports sub-directory.

Example:

ftp://ftp.sedl.org/pub/mirrors/CPAN/ports

Another easy method to find the Perl program for your
platform is to point your Internet browser at the LogiCore
VIP Web Site (see section 20.6).

20.8 Low-level PCI Software Drivers

The LogiCore PCI Interface does not include low-level
software drivers. However, such software is available
from Codesign.

The Codesign PCI OCX is targeted at custom PCI board
developers. The OCX allows easy access to a PCI de-
vice through Visual Basic, Delphi, Visual C++, or any
other environment that uses OCXs. The OCX is fully
Plug-n-Play compatible and can handle interrupts, port
I/O, and memory I/O under Windows 95. A control panel
applet allows the user to specify vendor and device IDs
for their custom PCI device. The OCX automatically de-
tects what resources are allocated to the device by the
operating system. The PCI OCX is great for prototyping
and demonstrating new PCI hardware devices and for
developing end-user applications."

Part Number: 2A91

Price: US$199.00 each

For fastest response, please send orders and inquiries to
info@cdcorp.com .

Contact:

Codesign
3712 N Broadway
Suite 120
Chicago, IL 60613
E-mail: info@cdcorp.com .

http://www.xilinx.com/products/logicore/logicore.htm
http://www.perl.com
ftp://ftp.sedl.org/pub/mirrors/CPAN/ports
http://www.xilinx.com/xapp/xapp051.pdf
http://www.xilinx.com
mailto:pci@xilinx.com
mailto:info@cdcorp.com
mailto:info@cdcorp.com

49 LC-DI-PCIM-C/LC-DI-PCIS-C

21. Appendix C: Waveforms

21.1 Initiator Interface

Figure 20. Master Abort during an Initiator Memory Write (Scenario 1.1.19). Note that Received Master Abort
bit (CSR29) set in the Status Register. Note the DEV_TO internal signal indicates when the Initia-
tor’s Device Timeout counter expires.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 50

Figure 21. Initiator single data-phase Memory Write to a medium-speed slave that signals a Target Retry
condition (Scenario 1.3.4).

51 LC-DI-PCIM-C/LC-DI-PCIS-C

Figure 22. Initiator multi data-phase Memory Read to a slow-speed slave that signals a Target Abort condition
(Scenario 1.5.11).

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 52

Figure 23. Initiator multi data-phase Memory Write to a fast-speed slave that inserts TRDY- wait-states be-
tween 4th and 6th rising clock edge after FRAME- (Scenario 1.8.7). Note that the LogiCore Initiator
automatically inserts IRDY- wait-states after a successful data transfer.

53 LC-DI-PCIM-C/LC-DI-PCIS-C

Figure 24. Initiator multi data-phase Memory Read to a fast-speed slave that inserts TRDY- wait-states be-
tween 4th and 6th rising clock edge after FRAME- (Scenario 1.8.8). Note timing of COMPLETE sig-
nal. Also note that the LogiCore Initiator automatically inserts IRDY- wait-states before the last
data transfer, before it de-asserts FRAME-.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 54

Figure 25. Initiator multi data-phase Memory Read from a fast-speed slave that causes incorrect parity on
PAR (Scenario 1.10.2). Note that the LogiCore Initiator asserts PERR- two cycles after a data
transfer with invalid parity.

55 LC-DI-PCIM-C/LC-DI-PCIS-C

Figure 26. Initiator multi data-phase Memory Read from a fast-speed slave asserting TRDY- wait-state times
out when Latency Timer expires after 5 clock cycles (Scenario 1.11.2). LATENCY_TIMER indicates
the Latency Timer counter value. TIME_OUT indicates that Latency Timer has expired.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 56

Figure 27. Initiator performing Bus Parking (GNT- asserted but no REQUEST pending from user application).
(Scenario 1.13.4). Initiator performs Memory Write transaction starting from Bus Parking (Scenario
1.13.5).

57 LC-DI-PCIM-C/LC-DI-PCIS-C

Figure 28. Initiator performing Memory Write and Memory Read transactions after receiving a single-cycle
GNT- signal (Scenario 1.14.2).

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 58

21.2 Target Interface

Figure 29. Target Memory Write followed by Memory Read, single double-word transfer (Scenario 2.9.1).

59 LC-DI-PCIM-C/LC-DI-PCIS-C

Figure 30. Address parity error during a Target Memory Read, single double-word transfer (Scenario 2.10.1a).
Note that PAR is asserted High by the test scenario on the clock cycle following the address
phase, which is incorrect parity. The LogiCore macro asserts SERR- Low indicating an address
parity error. The System Error Signaled bit, CSR30, is also set in the Status Register.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 60

Figure 31. Data parity error during a Target Memory Write, single double-word transfer (Scenario 2.10.2).
Note that PAR is asserted High by the test scenario on the clock cycle following the data phase,
which is incorrect parity. The LogiCore macro asserts PERR- Low two cycles later indicating a
data parity error. The Parity Error Detected bit, CSR31, is also set in the Status Register.

61 LC-DI-PCIM-C/LC-DI-PCIS-C

Figure 32. Target Memory Write followed by Memory Read, three double-word burst transfer, Initiator asserts
an IRDY- wait-state during second transfer in each transaction (Scenario 2.13.2). Note that the
LogiCore Target state machine automatically inserts TRDY- wait-states during the Memory Read
burst operation.

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 62

Figure 33. Target Memory Write, single double-word transfer. User application delays asserting READY for
seven clock cycles (Scenario 2.14.3)

63 LC-DI-PCIM-C/LC-DI-PCIS-C

Figure 34. Target Memory Read, two double-word transfer. User application forces Target Disconnect by as-
serting TERM before second transfer (Scenario 2.14.10).

LogiCore™ PCI Master and Slave Interface User's Guide

LC-DI-PCIM-C/LC-DI-PCIS-C 64

Figure 35. Target Memory Write, single double-word transfer. Initiator asserts FRAME- and de-asserts IRDY-
for seven clock cycles (Scenario 2.14.13).

65 LC-DI-PCIM-C/LC-DI-PCIS-C

Notes:

Sales Offices

© 1996 Xilinx, Inc. All rights reserved. Xilinx and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the
Programmable Logic Company is a service mark of Xilinx, Inc. All other company names are trademarks of their respective owners.

PN: 0401561-01

North America

Corporate Headquarters

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.

Tel: 1 (408) 559-7778
FAX: 1 (408) 559-7114
EMAIL: hotline@xilinx.com
WEB: http://www.xilinx.com

Northern California

Xilinx, Inc.
1281 Oakmead Parkway
Suite 202
Sunnyvale, CA 94086

Tel: (408) 245-9850
FAX: (408) 245-9865

Southern California

Xilinx, Inc.
15615 Alton Parkway
Suite 280
Irvine, CA 92718

Tel: (714) 727-0780
FAX: (714) 727-3128

New Hampshire

Xilinx, Inc.
61 Spit Brook Road
Nashua, NH 03060

Tel: (603) 891-1096
FAX: (603) 891-0890

Pennsylvania

Xilinx, Inc.
905 Airport Rd.
Suite 200
West Chester, PA 19380

Tel: (610) 430-3300
FAX: (610) 430-0470

Texas

Xilinx, Inc.
4100 McEwen
Suite 237
Dallas, TX 75244

Tel: (214) 960-1043
FAX: (214) 960-0927

Illinois

Xilinx, Inc.
939 N. Plum Grove Road
Suite H
Schaumburg, IL 60173

Tel: (708) 605-1972
FAX: (708) 605-1976

North Carolina

Xilinx, Inc.
6080-C Six Forks Rd.
Raleigh, NC 27609

Tel: (919) 846-3922
FAX: (919) 846-8316

Europe

United Kingdom

Xilinx, Ltd.
Suite 1B, Cobb House
Oyster Lane, Byfleet
Surry KT14 7DU
UNITED KINGDOM

Tel: (44) 932-349401
FAX: (44) 932-349499
EMAIL: ukhelp@xilinx.com

France

Xilinx SARL
Espace Jouy Technology
21, rue Albert Calmette, Bt. C
78353 Jouy en Josas, Cedex
FRANCE

Tel: (33) 1-34-63-01-01
FAX: (33) 1-34-63-01-09
EMAIL: frhelp@xilinx.com

Germany

Xilinx, GmbH
Dorfstr. 1
85609 Aschheim
München
GERMANY

Tel: (49) 89-99-1549-0
FAX: (49) 89-99-904-4748
EMAIL: dlhelp@xilinx.com

Japan

Xilinx, K.K.
Daini-Nagaoka Bldg. 2F
2-8-5, Hatchobori Chuo-ku
Tokyo 104
JAPAN

Tel: (03) 3297-9191
FAX: (03) 3297-9189

Asia Pacific

Hong Kong

Xilinx Asia Pacific
Unit No. 4312
Tower 2, Metroplaza
Hing Fong Road
Kwai Fong, N.T.
HONG KONG

Tel: (852) 2424-5200
FAX: (852) 2494-7159
EMAIL: hongkong@xilinx.com

®

The Programmable Logic CompanySM

http://www.xilinx.com
mailto:hotline@xilinx.com
mailto:ukhelp@xilinx.com
mailto:frhelp@xilinx.com
mailto:dlhelp@xilinx.com
mailto:hongkong@xilinx.com
http://www.xilinx.com/company/sales/na_reps.htm
http://www.xilinx.com/company/sales/int_reps.htm
http://www.xilinx.com/company/sales/int_reps.htm

	Introduction
	Overview
	PCI 2.1 Compliance
	LogiCore PCI Interface Features
	Functional Blocks

	Getting Started
	Design Methodology
	Modular Construction
	Selecting the Right Speed Grade

	LogiCore PCI Interface Operation
	LogiCore PCI Interface
	Supported PCI Commands

	Signal Descriptions
	PCI Bus Interface Signals
	User Interface Signals
	Symbol
	PCI Bus Interface Signals
	AD[31:0]_IO
	CBE[3:0]_IO
	PAR_IO
	FRAME_IO
	TRDY_IO
	IRDY_IO
	STOP_IO
	DEVSEL_IO
	IDSEL_I
	INTA_O
	PERR_IO
	SERR_O
	REQ_O
	GNT_I
	Boundary Scan
	RST_I
	CLK

	User Interface Signals
	Cycle Control
	FRAME-
	IRDY-
	TRDY-
	STOP-
	DEVSEL-

	Bus Control
	BASE_HIT[7:0]
	ADDR_VLD
	DATA_VLD
	CNFG_VLD
	S_WRDN
	PCI_CMD[15:0]
	S_CBE[3:0]

	Address/Data
	ADDR[31:0]
	ADIO[31:0]
	PERR-

	User Control
	READY
	TERM
	T_ABORT
	SRC_EN
	INTR-
	KEEPOUT

	Initiator-Only Functions
	REQUEST
	M_CBE[3:0]
	M_WRDN
	COMPLETE
	TIME_OUT

	Master (Initiator) State Machine
	M_DATA
	DR_BUS
	M_ADDR-
	I_IDLE

	Slave (Target) State Machine
	IDLE
	B_BUSY
	S_DATA
	BACKOFF
	FREE
	LOCKED

	Status Output
	CSR[39:0]
	CSR[15:0]-Command Register
	CSR[31:16]-Status Register
	CSR[37:32]-Transaction Status

	Building a Complete PCI Design
	Target Interface
	Initiator Interface
	Burst Support

	Customizing the LogiCore PCI Interface
	Step 1: Changing Target/Initiator to Target-Only
	Step 2: Disabling Latency Timer
	Step 3: Disabling Data Source Pipelining Logic
	Base Address Registers
	PCI Configuration Space Overview
	Configuring the Read-Only CSH Values
	Command Register
	Status Register
	Transaction Status bits

	General Design Guidelines
	Degree of Difficulty
	Signal Pipelining
	Keep it Registered
	Critical Path Signals
	Watch the Levels of Logic
	Make Only Allowed Modifications
	Place User Application Logic in USERAPP

	Target Data Transfers and Control
	Typical Target data interface
	Target Write
	Target Read

	Initiator Data Transfers and Control
	Typical Initiator data interface
	Initiator Read
	Initiator Write
	Data Steering Control

	Data Flow Control Signals
	READY: Ready to Perform a Transaction
	DATA_VLD: Valid Data Transfer

	Target-Initiated Terminations
	Automatic Wait-State Insertion
	LogiCore Interface is providing data
	Completing an Initiator transaction

	Handling Burst Transfers
	Keeping Track of the Address Pointer
	Supplying Data in Burst Transfers
	LogiCore PCI transfer rates
	FIFOs Increase PCI Burst Bandwidth

	Tips for Building an Initiator Controller
	Start with a “Mission” Statement
	What Data Transfers are Required?
	What Happens if the Transaction Terminates?
	Who Goes First?

	Controlling Initiator Transactions
	Requesting the Bus
	Starting the Transaction (Address Phase)
	Transferring Data (Data Phase)
	Completing the Transfer (COMPLETE)

	Design Validation Process
	Step 1: Validate VIEWlogic Design Environment
	Step 2: Validate Functional Simulation Environment
	Step 3: Validate FPGA Design Environment
	Step 4: Validate Timing Simulation Environment

	Compliance Process
	Appendix A: Pinout, Configuration
	Layout Considerations
	Pinout Table
	Configuration Mode
	Example FPGA Pinout

	Appendix B: Resources
	PCI Special Interest Group (PCI-SIG)
	PCI and FPGA Design Consultants
	PCI Bus Simulation Model
	PCI Reference Books
	Xilinx Documents
	Web Site
	Perl Software
	Software Drivers

	Appendix C: Waveforms
	Initiator Interface
	Target Interface

	Sales Offices
	North America
	Corporate Headquarters
	Northern California
	Southern California
	New Hampshire
	Pennsylvania
	Texas
	Illinois
	North Carolina

	Europe
	United Kingdom
	France
	Germany

	Japan
	Asia Pacific
	Hong Kong

