
January 1998PERSONAL ENGINEERING 67

Steven K Knapp is the founder and presi-
dent of OptiMagic Inc (Aptos, CA,
www.optimagic.com), a firm that devel-
ops intellectual property and design soft-
ware for programmable logic. Prior to
founding this firm he held various applica-
tions, engineering and management posi-
tions at Xilinx and Intel’s former program-
mable logic division.

EDAEXPERT COLUMN

In HDLs, what you see isn’t always
what you get

Fig 1—A 3-input
multiplexer function in
classic form (a) follows

the intuitive structure and
datasheet view a designer

experiences with
schematic-based design.

The VHDL source code (b)
that implements the
3-input multiplexer

implicitly creates a latch
unless the designer

specifies a default
assignment.

(a)

(b)

Steve Knapp

What you see isn’t always what you
get. This cliché applies particularly
to digital design with hardware de-
scription languages (HDLs). VHDL
and Verilog offer tremendous abstrac-
tion and productivity benefits. How-
ever, just as with any good power
tool, HDLs present some potential
dangers. Used inappropriately, a
power saw could just as easily rip
through your arm as a sheet of ply-
wood. Likewise, HDLs provide pre-
viously undreamed of productivity—
but used incorrectly, they promise a
hellish design experience.

Think back to the days when you
began programming or drawing sche-
matics. That first program or chip was
probably much slower and far bigger
than intended. With experience,
though, your design techniques im-
proved. Using HDLs follows a simi-
lar path: first, learn the tool’s capa-
bilities and limitations, then recog-
nize that HDLs aren’t a panacea. They
can’t transform a slow, inefficient de-
sign into a model of perfection just as

a power saw won’t make you a mas-
ter carpenter. Drawing from my ex-
perience, this column addresses some
issues to be aware of when using VHDL
to design programmable logic.

Inferred latches

One interesting trap beginners
typically fall into is allowing unin-
tended logic to creep into designs.
For instance, it’s possible to inadvert-
ently specify a latch in VHDL source
code. While not a catastrophe, these
“inferred” latches consume valuable
real estate. A simple example dem-

onstrates the concept.
Assume a multiplexer selects be-

tween three input signals (A, B and
C) using two select lines (SEL1 and
SEL0) as in Fig 1a. The VHDL code to
specify the multiplexer might look
something like the text in Fig 1b. The
code functionally simulates correctly,
and the logic performs as you might
expect. However, when synthesizing
the design, software might issue a
warning indicating that it generated
a latch, probably caused by a missing
assignment in an If or a Case state-
ment. What exactly does this mean?

Examine the design in Fig 1a more

January 199868 PERSONAL ENGINEERING

Fig 2—The Synplify HDL Analyst design viewer for the inferred latch function presents two views of the synthesized
logic. The register-transfer-level (RTL) view (a) shows an equivalent schematic, while a technology view (b) shows
the physical implementation in a Xilinx XC4000E FPGA. Note that the synthesizer implements a latch (circled in a)
using the XC4000E’s level-sensitive RAM function (circled in b).

(a) (b)

Fig 3—Adding a default assignment simplifies both the RTL (a) and technology views (b) for the multiplexer function
from Fig 1a.

(a) (b)

closely. What happens when SEL1
and SEL0 are both asserted High? The
explicit VHDL code indicates that noth-
ing happens. VHDL implicitly uses a
latch to retain a prior state if there isn’t
an explicit transition, which means that
whatever appears on the MUX output
remains there as long as both SEL1
and SEL0 are High. How would a logic
synthesizer resolve this logic physi-

cally? It would use a gated latch.
Without closely examining the re-

sulting netlist, this extra logic might
go unnoticed. However, during place
and route you might note that the
design consumes a bit more logic than
expected. Some of the better logic-syn-
thesis packages provide a schematic
viewer to display the resulting synthe-
sized design. For example, Synplicity’s

(Sunnyvale, CA) Synplify offers an op-
tional design viewer, HDL Analyst, that
provides both register-transfer-level
(RTL) and technology mapping views
of a VHDL or Verilog source file.

Fig 2a shows HDL Analyst’s RTL
view for the design of Fig 1b. It con-
tains mostly gate-level primitives and
provides a look at how the synthesis
software interprets the HDL source

EDA
EXPERT COLUMN

January 1998PERSONAL ENGINEERING 69January 1998PE&IN 69

Fig 4—Another
implementation
of the 3:1
multiplexer
using VHDL’s
Case construct is
often the
preferred
method of
specifying this
function.

code. Fig 2b shows the correspond-
ing technology view for the same de-
sign but indicates how the logic maps
into functions available on the target
device—in this case, a Xilinx XC4000E
FPGA. The blocks labeled FMAP…
in Fig 2b represent lookup tables
(LUTs) in a Xilinx XC4000E.

Note the latch primitive in Fig 2a.
The resulting implementation uses
the XC4000E’s level-sensitive RAM
element to build it. Consequently, the
code in Fig 1b results in the use of
four LUTs—a less than optimal solu-
tion. While not ultimately efficient,
this implementation functions cor-
rectly, albeit a bit slow. Although the
machine-generated schematic for the
design isn’t as clear as one created by
a human, it’s far more understand-
able than digging through a text-
based netlist to figure out the func-
tionality—not a pleasant experience.

So, is there a better way to build
this design? You bet! The inferred
latch appears because the VHDL
source didn’t specify all possible con-
ditions. Adding a default assignment
to the bottom of the nested-If state-
ment (see Fig 1b) results in a more
efficient result (Fig 3). The latch dis-
appears and the technology view is
greatly simplified. Adding the default
assignment reduces the resource re-
quirements from four LUTs down to
only two—a near optimal solution.

Coding style also affects the effi-
ciency of the resulting logic. Gener-

Fig 5—Using 3-state
buffers for multiplexers

can be more efficient
when the underlying

technology supports it
and is most appropriate

for bus-oriented designs.

ally, Case statements tend to be more
efficient than nested-If statements for
multiplexer functions. Fig 4 shows

the VHDL code fragment implement-
ing the 3:1 multiplexer using a Case
construct. Note the default assign-
ment at the end of the statement us-
ing the Others keyword.

Using 3-state buffers

These seemingly minor points of
style illustrate a common misconcep-
tion among design novices. They as-
sume that a logic synthesizer and
optimizer always find the best imple-
mentation. In fact, much of the result

EDA
EXPERT COLUMN

Space left blank intentionally.

January 199870 PERSONAL ENGINEERING

Fig 6—Both the RTL (a) and technology views (b) of the implementation of the logic from Fig 5 show a greatly
simplified multiplexer.

(a) (b)

depends on the initial source code,
which is especially true with arith-
metic functions, where various carry-
look-ahead techniques result in
different speed-vs-area implementa-
tions. This column’s multiplexer
example demonstrates this idea. Note
that all the implementations built so
far (Figs 2 and 3) use logic gates to
construct the multiplexer. The Xilinx
XC4000E family also has on-chip
3-state buffers intended primarily to
implement bidirectional data buses.
In reality, a bidirectional bus is noth-
ing more than a multiplexer struc-
ture. However, most synthesis tools
won’t even consider a 3-state buffer
implementation without some
source-code changes.

The VHDL fragment in Fig 5 causes
the logic-synthesis software to build a
3-state buffer multiplexer (Fig 6). De-
pending on the state of the SEL inputs,
the MUX output either drives the val-
ues on A, B, or C, or the output is in
the high-impedance state. This particu-
lar implementation is available only for
devices containing internal 3-state buff-
ers such as the Xilinx XC4000 family
and the Lucent Orca family.

General HDL tips

Based on the earlier examples, keep
in mind a few general tips for HDL
designs:
• Know your synthesis tool, its capa-
bilities and limitations.
• A bad design won’t get better after
running it through logic synthesis.
Synthesis provides an efficient means
to enter a design, whether it’s good or
bad. Spaghetti code in any program-
ming language is still spaghetti code
after a compiler is finished with it.
• Designing with HDL is an ongoing
learning process. As you gain experi-
ence, your designs will be faster and
consume less logic. Don’t be afraid to
try trial implementations to under-
stand how a tool responds. Also look
at other people’s code for ideas.
• Investigate how your coding affects
the final implementation. Schematic
viewers are helpful. Without them,
you must reconstruct the design’s
structure from a text-based netlist.
• Always include a default assign-
ment in all If and Case statements,
even if you’re sure they cover all con-
ditions. Without a default assignment,

a synthesis tool can generate inferred
latches. Watch for warnings from the
software.
• It’s generally better to code multi-
plexers using a Case construct rather
than a nested-If construct.
• Each programmable-logic family
has unique features. Some special
methods might be required to use
these features, such as those needed
to build a multiplexer using 3-state
buffers. PE&IN

Editorial Feedback
This article’s value to me was:

High—269 Average—270 Low—271

EDA
EXPERT COLUMN

