
March 199848 PERSONAL ENGINEERING

Programmable logic overcomes
processor bottlenecks

Fig 1—Adding or multiplying two
large 8-bit values creates a wider
result. Handling numbers at or over
a processor’s bit width becomes slow
and cumbersome.

Fig 2—Two possible methods of adding four 8-bit integers, A, B, C and D,
demonstrate the size-performance tradeoff typical in FPGAs. All four values
share a common space-efficient but slow accumulator in (a). This method is
similar to a processor’s implementation. A fully parallel implementation (b) is
much faster but uses more logic.

Steven K Knapp is the founder and presi-
dent of OptiMagic Inc (Aptos, CA,
www.optimagic.com), a firm that devel-
ops intellectual property and design soft-
ware for programmable logic. Prior to
founding this firm he held various applica-
tions, engineering and management posi-
tions at Xilinx and Intel’s former program-
mable-logic division.

(a) (b)

EXPERT COLUMN EDA

Steve Knapp

General-purpose microprocessors
and microcontrollers have long been
mainstays in embedded systems, with
programmable-logic devices (PLDs)
functioning in a support role. The flex-
ibility and integration of these pro-
cessors simplify overall system de-
sign. However, what happens when
the application requires additional
computing power? Can programmable
logic do more than just decode access
to memory and peripherals?

Usually, a designer faced with a
performance problem simply up-
grades to a more powerful processor
with a wider word size and higher
clock frequency. This upgrade,
though, involves higher component
costs—faster memories and perhaps
a costly board to accommodate the
increased clock frequencies.

What choices do designers have?
A more powerful processor is the easy
solution, but it’s not always the best
or right one. For some applications, a
modest processor working in conjunc-
tion with programmable logic proves
a powerful combination. Program-

mable logic allows a designer to cre-
ate a standard processor for parts of
an application and to offload from it
burdensome processes, highly parallel
algorithms or time-critical functions.

Odd-size math

Though processors handle practi-
cally any design problem, they might
not perform some math or bit-twid-
dling functions efficiently or quickly.
A typical embedded processor pos-
sesses limitations such as fixed-
datapath width. Simple 8-bit micro-
controllers have an 8-bit accumulator
or processing unit. Eight bits are fine
for many functions, but what hap-
pens when you need to process 10-,
12- or even 16-bit data? One solution
is to write code to handle multibyte
arithmetic. This code is straightfor-
ward but quickly consumes proces-
sor bandwidth in math-intensive ap-
plications. It’s not a solution for time-

critical functions. You could turn to a
more powerful processor with a
wider word width. This alternative
overcomes the performance limita-
tions but might considerably boost
system cost. Yet another approach

March 199850 PERSONAL ENGINEERING

EDA
EXPERT COLUMN

Fig 3—Bit-testing (a) using a
microcontroller is thousands of times
slower than a programmable logic
solution (b).

; SOLVE A RANDOM LOGIC FUNCTION
: OF 6 VARIABLES BY DIRECTLY POLLING
; EACH BIT (APPROACH USING MCS-51
; UNIQUE BIT-TEST INSTRUCTION
; CAPABILITY) SYMBOLS USED IN LOGIC
; DIAGRAM ASSIGNED TO
; CORRESPONDING 8051 BIT
; ADDRESSES
U BIT P1.1
V BIT P2.2
W BIT TFO
X BIT IE1
Y BIT 20H 0
Z BIT 21H 1
G BIT P3.3
;
TEST_V: JB V, TEST_U

JNB W, TEST_X
TEST_U: JB U, SET_G
TEST_X: JNB X, TEST_Z

JNB Y, SET_G
TEST_Z: JNB Z, SEG_G
CLR_G: CLR G

JMP NXTTST
SET_G SETB G
NXTTST:

(b)

(a)

offloads the wider arithmetic func-
tions to logic implemented in a PLD.

The bit width of an arithmetic op-
eration grows with increased process-
ing. Add two 8-bit values and you
could end up with a 9-bit result. Mul-
tiplying two 8-bit values might pro-
duce a 16-bit result. Add or multiply
these values a few times and you
could wind up with a very large word
(Fig 1). Programmable logic allows
you to custom tailor the architecture.
Need a 13-bit adder? You’ll probably

have trouble implementing it with an
8-bit microcontroller but not in a PLD.

An additional benefit of program-
mable logic is that you choose how
parallel to make the overall opera-
tion. Like a processor, the program-
mable device could initiate multiple
add operations sequentially and share
a common accumulator (Fig 2a). Or it
could implement the multiple add
operations in parallel and dramati-
cally reduce overall processing time
but at the expense of additional logic
(Fig 2b).

Another limitation of most proces-
sors is that they don’t handle bit
manipulation well, though some pro-
cessors have built-in instructions to
simplify bit-oriented functions. Pro-
grammable logic easily and efficiently
handles bit-wise functions and does
so with amazingly improved perfor-
mance. A complex control function
might simplify into a small collection
of combinatorial logic. Fig 3a demon-

strates the difference in complexity
between 8051 assembly code and a
function that easily fits into just about
any PLD (Fig 3b and Ref 1).

Parallel structure

A major limitation of traditional
processors for some functions is their
fundamental architecture. Most of
them employ a von Neuman-style ar-
chitecture where instructions execute
sequentially. While the processor ex-
ecutes one instruction, others wait
their turn. Consequently, traditional
processors are notoriously poor at
implementing parallel algorithms
such as those found in most DSP apps.

For example, filtering and image
processing are inherently parallel and
often contain feedback loops. When
handled by a traditional processor,
these algorithms are split in time over
tens to hundreds of clock periods,
consuming a significant portion of the

Fig 4—The relative performance for various implementations of an 8-bit
16-tap FIR filter compared to a 50-MHz fixed-point TMS320-series DSP shows
price-performance tradeoffs between processors and FPGAs. Note the FPGA
performance in the black boxes, where a serial approach is slower but uses
less logic. A parallel tack outperforms a typical DSP by a factor of 22 in this
example (Ref 2).

133-MHz Pentium (no MMX)

One 50-MHz DSP

3000-gate XC4003E-3 FPGA

Four 50-MHz DSPs

13,000-gate XC4013E-2 FPGA

0 5 10 15 20 25

Performance relative to 50-MHz fixed-point DSP

22.00 (Parallel Arithmetic)

4.00

2.60 (Serial Arithmetic)

1.00

0.24

8-bit 16-tap FIR Filter Performance Comparison

March 199852 PERSONAL ENGINEERING

EDA
EXPERT COLUMN

Fig 5—SRAM-based FPGAs have a simple interface with a processor. FPGAs
can boot themselves and share a PROM with a processor (a). They can also
act like a peripheral, receiving their programming from a processor (b).

(a) (b)

processor’s possible bandwidth. A
designer can balance logic utilization
and performance by implementing
some functions sequentially and oth-
ers in parallel.

A PLD can outperform a seemingly
fast processor in highly parallel op-
erations. Fig 4 shows the performance
of an 8-bit 16-tap FIR filter imple-
mented on various processors. The
logic device in this example is a Xilinx
4000E series field-programmable gate
array (FPGA). Depending on how the
algorithm is implemented, the FPGA
outperforms a Pentium-class proces-
sor as well as a 50-MHz TMS320-
series fixed-point DSP processor.
More details on working with signal-
processing functions in FPGAs is a
topic of a future article.

Essentially, programmable logic
helps turbo charge practically any
high-performance processing appli-
cation. An additional advantage is
that these devices can integrate inter-
face and system glue logic. For most
applications, I tend to favor coarse-
grained SRAM-based FPGAs (Ref 3).
Devices such as Xilinx’s (San Jose,
CA) XC4000-Series and Spartan chips,
Altera’s (San Jose, CA) Flex 10K de-
vices and Lucent Technologies’
(Allentown, PA) Orca FPGA family
are all high-density high-performance

devices with dedicated carry logic for
implementing fast arithmetic and
counters. They’re also based on
SRAM technology and are therefore
reprogrammable, even in system. Fur-
ther, these devices have on-chip SRAM
that can serve as small FIFOs or other
small data buffers. These FPGAs eas-
ily interface to a standard micropro-
cessor or microcontroller (Fig 5) ei-
ther through a parallel peripheral in-
terface or a self-booting interface that
shares the processor’s boot PROM.

With all of its benefits, engineers
should be aware of some potential
pitfalls when using programmable
logic for embedded processing. Cre-
ating a programmable-logic design is
more difficult than writing code for a
processor. A designer typically cre-
ates programmable logic using sche-
matics or describes it with a hard-
ware description language such as
VHDL, Verilog or ABEL. While not
difficult, writing in these languages
presents an extra skill to learn. Ob-
taining the best performance and den-
sity from a PLD usually requires
good working knowledge of the un-
derlying architecture.

Further, programmable logic re-
quires another, sometimes expensive,
toolset. However, most vendors now
supply a lower-cost version of their

52

This space left
blank intentionally.

March 1998PERSONAL ENGINEERING 53March 1998PE&IN 53

EDA
EXPERT COLUMN

software supporting their small-to-
moderate density devices (see
www.optimagic.com/lowcost.html for
information on free or low-cost soft-
ware available on the web).

Of course, it’s not just the selection
of tool sets that determines which path
to take. The task at hand dictates the
solution. Generally, a processor bet-
ter implements complex control and
general algorithms. Building complex
control in a PLD is more difficult and
time consuming. Furthermore, a small
change in a control program has little
effect on the processor implementation.

In contrast, a small change in a con-
trol state machine built using pro-
grammable logic might have a sig-
nificant effect on the size and result-
ing performance of the logic imple-

mentation. Typically, programmable
logic is better than processor-based
programs at simple control functions
using high-speed state machines.

Function for function, a processor’s
logic is generally less expensive than
a PLD. Thousands of separate func-
tions or processes share this logic.
However, programmable logic gen-
erally outperforms a processor on
dedicated functions. For perfor-
mance-critical applications, a PLD can
be less expensive than a dedicated
processor. In an extreme example (see
http://www.hpcc.gov/pubs/blue94/
section.5.15.html), a board full of
FPGAs outperformed conventional
supercomputers by a factor of 100 or
more—and it was many orders of mag-
nitude less expensive. PE&IN

References

1. Wharton, J, Intel Corp (http://
developer.intel.com/design/mcs51/
applnots/01502a01.htm), App Note
AP-69, pgs 27-28.
2. Knapp, S, Xilinx Inc (http://
www.xilinx.com/appnotes/dspintro.pdf),
“Using Programmable Logic to Ac-
celerate DSP Functions,” pg 2.
3. Knapp, S, “Understanding pro-
grammable logic means digesting its
alphabet soup,” PE&IN, July 1997, pgs
75-79.

Editorial Feedback
This article’s value to me was:

High—263 Average—264 Low—265

Have you missed an
issue of PE&IN?

Don’t panic, just visit our web site
at www.pein.com. The site is home
to three years of back issues, from
1995 through the present issue.
View an issue online or download
it for future reference.

So the next time you encounter
a reference to a past issue of
Personal Engineering, just point
your browser to our home page
and get the information you need
immediately!

 www.pein.com

This space left
blank intentionally.

