
May 199856 PERSONAL ENGINEERING

FPGA lookup tables build flexible
pattern matchers

Steven K Knapp is the founder and presi-
dent of OptiMagic Inc (Aptos, CA,
www.optimagic.com), a firm that devel-
ops intellectual property and design soft-
ware for programmable logic. Prior to
founding this firm he held various applica-
tions, engineering and management posi-
tions at Xilinx and Intel’s former program-
mable-logic division.

Fig 1—A 4-input
lookup table

(LUT4) is
essentially a
16x1 PROM

whose address
inputs select the

logic function
held in the

memory’s data
contents.

Table 1—Various
FPGA companies
build devices
using lookup
tables (LUTs) to
implement logic.

FPGA Family Vendor
3-input

LUT
4-input

LUT
5-input

LUT
6-input

LUT

Flex 10K Altera •

AT40K Atmel • •

Orca Lucent • • •
VF1 Vantis • • • •
XC4000 Xilinx • •

EXPERT COLUMN EDA

Steve Knapp

Peer into the heart of most SRAM-
based field-programmable gate ar-
rays (FPGAs), and you’ll find a com-
mon logic function called a lookup
table (LUT). This little bundle of Bool-
ean brilliance is the basic building
block responsible for the combinato-
rial logic in an FPGA design. FPGA
development software gathers the
gates you draw with a schematic edi-
tor or that a logic synthesizer creates
from your description, and it packs
the resulting function into LUTs.
However, the development software
sometimes hides the incredible power
and flexibility inherent in a LUT,
which is capable of much more than
just implementing a collection of
gates. This article investigates a few
possibilities.

Building blocks

First, who makes FPGAs using
LUTs? Table 1 shows a list of popular
device families, their manufacturers
and the number of LUT inputs. Ge-

nerically, the industry considers these
devices coarse-grained FPGA archi-
tectures, distinct from fine-grained
architectures that employ a much
smaller logic function. Some of the
listed architectures support only
4-input LUTs. Others combine two
4-input devices with a 2:1 multiplexer
in each logic block to make a 5-input
LUT. Some devices even support
LUTs with as many as six inputs.

Second, and perhaps more funda-
mental, what exactly is a LUT? Con-
sider the example of a 4-input device,
which is essentially a 16-bit deep
1-bit wide PROM (Fig 1). Although
built with SRAM technology, exter-
nal circuitry programs it at power-up
and usually leaves it alone, so think
of it as PROM. The four logic inputs
act as address lines to the LUT’s
PROM, whose contents define the

May 199858 PERSONAL ENGINEERING

EDA
EXPERT COLUMN

Fig 2—
Regardless of
logical
complexity, a
4-input lookup
table can always
represent a
function with
four inputs,
provided the
function
contains no
feedback.

Table 2—A lookup table’s complexity grows exponentially with the number
of inputs.

Generically For 4-input LUT For 5-input LUT

LUT inputs n 4 5

PROM bits required 2n 16 32

Possible functions 22n 216 = 65,536 232 = 4,294,967,2962n 16

logic function and require 16 memory
locations. These locations represent
65,536 possible functions ranging
from simple state definitions such as
a logic One or Zero to something more
complex such as a 4-input XOR. Sim-
ply stated, if a function has four or
fewer inputs, it fits into a 4-input LUT
regardless of its Boolean complexity,
assuming no feedback. Fig 2 shows
such an example.

Another way to think of a 4-input
LUT is as a 4-input Karnaugh map.
Each of the device’s memory loca-
tions maps to one of the Karnaugh
map’s cells. For designers more fa-
miliar with PAL-like devices, think
of this same LUT as a marcrocell with
16 product terms, each with four in-
puts and their complements (Fig 3).

Table 2 shows that a LUT’s com-
plexity grows exponentially with the
number of inputs. For example, while
a 4-input LUT supports 65,536 pos-
sible functions, a 5-input supports
more than 4 billion possible functions!

If a wider LUT is more flexible and
thus more powerful, why not use an
even wider one on a device? Wouldn’t

8-input LUTs be even better and faster
than a 4-input version for implement-
ing logic? Sure, it would be faster for
wider functions and support a great
many combinations. However, the
memory array a LUT requires also
grows exponentially with the num-
ber of inputs. Growing one from four
inputs to five doubles the number of
memory bits it needs, which roughly
doubles the silicon area. In addition,
not every function could optimally
use such a large block, resulting in
wasted silicon area. Based on both
theoretical and empirical data, LUTs
with between three to five inputs
seem ideal for most applications.

Note that some devices, such as
Altera’s Flex 10K FPGAs, contain big-

ger SRAM memory functions, known
as embedded array blocks (EABs).
When functioning as a lookup table,
an EAB performs as a single 10-input
LUT or as up to eight different
8-input LUTs with shared inputs.

Another advantage of LUTs is speed.
Conceptually, LUTs exhibit a constant
delay regardless of the function.
Though some subtle differences arise
in delay between the LUT inputs, ven-
dors model the delay from all inputs
to the output with the same value. Con-
sequently, an inverter, a 4-input XOR
or other complex 4-input functions
all incur the same logic delay.

Development support

Direct development system sup-
port for LUTs varies widely between
vendors and sometimes even between
device families from one vendor. Ev-
ery development tool can map a func-
tion described in schematics or
through synthesis and place it in a
LUT. Some, though, allow you to
specify LUT contents directly. Consider
that Xilinx offers schematic primitives
that define a 16x1 PROM (ROM16X1)
or a 32x1 PROM (ROM32X1). Recall
that a 4-input LUT behaves exactly
like a 16x1 PROM. In a schematic en-
vironment, you define LUT contents
by attaching an attribute to the ap-
propriate ROM symbol. For instance,
to define the function in Fig 2 using a
PROM symbol, you place a ROM16X1

May 1998PERSONAL ENGINEERING 59

EDA
EXPERT COLUMN

Fig 3—A 4-input
lookup table,
when presented
as a PAL
macrocell,
appears as 16
product terms,
each with four
inputs and their
complements.

Table 3—
Evaluating all
16 possible input
values produces
the resulting
data to
implement the
digital pattern
matcher in a
single 4-input
LUT.

Pattern
(D, C, B, A)

Number of
matching bits

3 or more
bits match?

LUT
Address LUT Value

0000 2 No 0 0

0001 1 No 1 0

0010 3 Yes 2 1

0011 2 No 3 0

0100 1 No 4 0

0101 0 No 5 0

0110 2 No 6 0

0111 1 No 7 0

1000 3 Yes 8 1

1001 2 No 9 0

1010 4 Yes A 1

1011 3 Yes B 1

1100 2 No C 0

1101 1 No D 0

1110 3 Yes E 1

1111 2 No F 0

symbol on the schematic, connect the
appropriate inputs and add an at-
tribute to define the PROM’s data con-
tents. The Xilinx software expects the
initialization string in hexadecimal
format, from most-significant bit
down to least, and in this example it
would be INIT=8D04. In contrast,
Lucent doesn’t seem to offer a ROM
primitive at first glance. However,
you can use one of the on-chip RAM
primitives and turn it into ROM by
disabling the RAM’s write-enable
input.

Pattern-matching example

Let’s look at a simple example that
demonstrates the full power of a LUT.
In some digital pattern matching ap-
plications you want to find an exact
match to a specific string. In other
cases, you’re interested in also find-
ing a close match. For instance, as-
sume that a circuit must look for the
binary pattern 1010. Further, the in-
coming data might be corrupted or
you might want to check for similar
patterns. So instead of an exact com-

parison, check if at least three out of
the four bits match.

In other words, you want to per-
form the function in Fig 4 and Table 3.
The process then involves comparing
each bit against a corresponding bit
in the desired fixed pattern, counting
the number of bits that match the pat-
tern and checking if the number of
match bits reach the threshold value

(three).
Because you’re matching against a

fixed pattern and because the thresh-
old value is fixed, the pattern matcher
becomes a function of the four logic
inputs. If only four inputs are avail-
able, then this entire complex func-
tion must fit into a 4-input LUT. If
you wish to implement it in a Xilinx
XC4000, the easiest way to specify it
would be with a ROM16X1 symbol
with the initialization property set to
INIT=8D04. Alternatively, you could
describe the function with the sche-
matic in Fig 2 or enter it through syn-
thesis using the data in Table 3 or the
Karnaugh map in Fig 1, all of which
show equivalent implementations.

This example demonstrates how
to match in input stream to a fixed
pattern. What if the target values were
variable? A number of possible imple-
mentations consume varying num-
bers of gates, with larger designs
allowing faster switches between
patterns.

Consuming the largest amount of
real estate but permitting the fastest
pattern-change time is a pattern

May 199860 PERSONAL ENGINEERING

Fig 4—A 4-bit
digital pattern
matcher fits into
one LUT.

matcher with additional inputs for a
variable pattern and a variable thresh-
old. With it you can change which
pattern the logic looks for very
quickly but at the cost of substan-
tially increased logic size.

Another possible solution involves
FPGAs with LUTs that can function
as RAM. With some additional con-
trol logic, you can occasionally up-
date the LUT contents to match a new
pattern. While pattern changes aren’t

as fast as with the previous circuit,
this design consumes much less logic.

Or as in Fig 4, you could build
multiple circuits with various fixed
patterns and thresholds. Whenever
an application requires a new set of
values, you reprogram the entire
FPGA with another design that con-
tains the modified match values. This
approach is useful in designs where
variable values change very infre-
quently, but it has the disadvantage
that the updating process requires
that the FPGA shut down during re-
programming. PE&IN

Editorial Feedback
This article’s value to me was:

High—269 Average—270 Low—271

Intentionally blank

