
July 1998PERSONAL ENGINEERING 45

Steven K Knapp is the founder and
president of OptiMagic Inc (Aptos, CA,
www.optimagic.com), a firm that devel-
ops intellectual property and design soft-
ware for programmable logic. Prior to
founding this firm he held various applica-
tions, engineering and management posi-
tions at Xilinx and Intel’s former program-
mable-logic division.

Constant-coefficient multipliers save FPGA
space, time

Fig 1—An 8-bit constant-coefficient multiplier function with 4-input LUTs
requires two identical sets of coefficient tables and a 12-bit adder.

EXPERT COLUMN EDA

Steve Knapp

Multiplication is one of the more sili-
con-intensive functions, especially
when implemented in programmable
logic. This column demonstrates a
technique that requires less silicon for
multipliers, where one of the inputs is
a constant. It leverages the techniques
described in a previous column on
lookup-table-based FPGAs (Ref 1).

Multiplying by a constant appears
often in applications. Consider just a
few examples (multiplication by a con-
stant function appears in italics):
•Gain-offset amplification—The
heart of most amplifier functions is
to multiply an input (x) by a constant
(A) with an offset (B) as in y = Ax + B.
• Color-space conversion—Translat-
ing among various color spaces in video
applications involves constant-coeffi-
cient multiplication and offset calcu-
lations. The following equations show
the relationship between the RGB
space and the YCrCb color space, which
is itself a scaled and offset version of
the YUV color space (Refs 3 and 4):

Y= 0.257R' + 0.504G' + 0.98B' + 16
Cr = 0.439R' - 0.368G' - 0.071B' + 128

Cb = -0.148R' - 0.291G' + 0.439B' + 128

•Digital Filtering—Here’s another
application with many constant-
coefficient multiplication functions.
The equation below defines a gener-
alized equation of a FIR filter, which
multiplies each of its coefficients by a
clock-delayed value of the input:

y = c0x0 + c1x1 + c2x2 + … + cnxn

Review the fundamentals

In cases where one of the factor
inputs to a general-purpose multiplier
is a constant, an obvious construct is
to connect one input to a fixed value.
One alternative, a special construct,
greatly reduces the silicon area re-
quired (Ref 2).

Before delving into its details,
though, a quick review of multiplica-

tion fundamentals helps demonstrate
the overall approach. Consider the
case where you want to multiply any
integer from 0 to 31 by a constant (in
this example, 47). Now take out pa-
per and pencil and multiply 28 times
47—but no cheating, do it longhand
the way you learned in elementary
school. Most people multiply digit
by digit and use the multiplication
table stored in their brain.

A similar approach works with
LUT-based FPGAs. Most of those de-
vices support at least a 4-input lookup
table, allowing as many as 16 pos-
sible input values. Think of a 4-input
LUT as being a 16 x 1 ROM. With
multiple LUTs you can represent 16
data words of practically any width.

Now represent the variable input
as a 2-digit decimal value, using T to
represent the tens column and U for
its units, so now the multiplier’s out-
put becomes Product = TU x 47. Fur-

July 199846 PERSONAL ENGINEERING

Fig 2—A large-
width multiplier
requires a large
adder tree. While
a multiplier isn’t
limited to any
size conceptually,
adder delay
places a practical
limit on the word
size a multiplier
can handle unless
the FPGA need
only calculate a
few thousand
multiplies per
second.

Table 1—A
lookup table

for multiplying
by 47 (decimal)
is just one step

above the
multiplication

tables that
elementary

school students
memorize.

Multiplicand (decimal) Product = Multiplicand x 47

0 0

1 47

2 94

3 141

4 188

5 235

6 282

7 329

8 376

9 423

EDA
EXPERT COLUMN

ther assume that the lookup table has
just ten locations. How do you build
a function with 32 different values in
a lookup table with ten spaces? You
must somehow simplify TU into val-
ues for T and U, each having just ten
possible values.

Luckily, simple math transforms the
previous equation into another one:

Product = (T x 47) x 10 + (U x 47)

where both T and U have values be-
tween 0 and 9. (In practice, it’s pos-
sible to further reduce T in this example
because it always lies between 0 and
3). Now a single lookup table (Table
1) works for the example. The implied
multiplication by ten for T is some-
thing you can easily do in your head.

As an example, multiply 28 by 47.
First look up the multiplicand 2 in Table
1, which yields 94 for T x 47. Next look
up the multiplicand 8, and the table
gives 376 for U x 47. Return to the
previous equation and plug in the
intermediate results for T x 47 and U x
47 to get the result 94 x 10 + 376 = 1316.

Adapting the approach

Is this method a good technique to
use in FPGA designs? Not really, but

a similar approach works. We hu-
mans deal in decimal numbers most
of the time. Unfortunately, multiply-
ing by ten in the binary world costs
lots of silicon area. However, you can
modify the approach for FPGAs by
remembering two facts: First, a 4-
input LUT holds as many as 16 dif-
ferent values. Second, multiplying a
value by 16 is easy in a binary sys-
tem—just shift it to the left four times.
In an FPGA, you can accomplish this
multiply by properly connecting
wires in the design.

 Instead of working in decimal, an
FPGA design becomes more efficient
if you work in hexadecimal (base 16).
Now the task becomes multiplying
the variable input, which ranges from

0 to 1F, by a constant = 2F. The values
for the lookup table appear in Table 2,
and the modified equation becomes
Product = (T x 2F) x 1016 + (U x2F).
Note that you multiply T x 2F by 1016,
which means 16 decimal. Further, you
can reduce the lookup table for T x 2F
to two entries because in the example
T has a limited range from 0 to 1.

Structural implementation

With the algorithm in hand, how
do you actually build such a beast?
Fig 1 shows a block diagram of the
structure for an 8-bit input multiplied
by an 8-bit constant. FPGA lookup
tables hold the 8-bit constant as the
product of the input value, similar to
the values in Table 2. Creating this
table is probably the most difficult
part of the process, but some vendors
like Xilinx and Altera provide tools
to make the job easier.

The dataflow through the multi-
plier involves the following six parts:

1. This example uses 4-input LUTs to
build the multiplier lookup table. Be-
cause its value is eight bits wide, the
input signal splits into two 4-bit nibbles.

2. Each nibble connects to its own
copy of the coefficient lookup table.
The 4-bit input nibble, multiplied by
an 8-bit constant, results in a 12-bit
output. Each nibble multiplier con-

July 1998PERSONAL ENGINEERING 47

6. Optional pipelining registers help
boost performance through the mul-
tiplier. Clock rates of 100 MHz or
more are possible if the design toler-
ates the extra clock latency. A
pipelined adder provides the great-
est increase in performance but at the
cost of additional silicon and clock
latency.

The structure in Fig 1 shows how
to create a multiplier for an 8-bit in-
put, but what about wider inputs?
The width of the LUT used to build
the multiplier lookup table deter-
mines the overall structure. Using a
4-input LUT, an FPGA processes the
input in 4-bit chucks. The logic scales
results from each nibble multiplier to
its proper binary weighting and then
sums them together through an adder
tree (Fig 2). Again, note the optional
pipelining registers to boost perfor-
mance.

Is this trip necessary?

After running through this exer-
cise, you might be asking “Is this ef-
fort really necessary?” A few statis-
tics might convince you of the an-
swer. A design built with Xilinx
XC4000E-1 devices forms the basis
for the data in Table 3. The multiplier

Multiplicand Product = Multiplicand x 2F

0 000

1 02F

2 05E

3 08D

4 0BC

5 0EB

6 11A

7 149

8 178

9 1A7

A 1D6

B 205

C 234

D 263

E 292

F 2C1

Table 2—A
lookup table for
multiplying by
2F (hex) requires
the use of base
16 instead of
base 10 math.
Still, the table
reduces the
multiplication
process into a
series of
additions.

Fig 3—The Xilinx
Core Generator

software
produces

nearly optimal
implementations

of constant
coefficient

multipliers.

EDA
EXPERT COLUMN

sumes 12 LUTs.

3. Before adding the products from
the nibble multipliers, the design
must multiply the upper result by 16
(decimal). However, instead of shift-
ing the upper nibble by four places,
strip off the bottom four places from
the lower nibble multiplier because
the adder doesn’t need them. Conse-
quently, the size of the final adder
drops from 16 bits down to 12 bits.
Luckily, the adder carry delay is also
the critical path, so this approach
minimizes logic requirements and re-
duces overall delay (Ref 2).

4. The input to the 12-bit adder de-
rives from the upper eight bits of the
lower nibble multiplier, appended
with four “stuff” bits at the top. This
example assumes that all the values
are positive and the stuff bits are all
Low. For negative values, the stuff
bits should all be High. To support
both positive and negative data, the
“stuff” bits are the sign extension of
the upper eight bits from the lower
nibble multiplier.

5. The 12-bit adder recombines the
results from the upper nibble multi-
plier and the extended upper eight
bits from the lower nibble multiplier.
The addition generates no carry out-
put. The final multiplier output
equals the output of the adder and
the lower four bits from the lower
nibble multiplier, producing a 16-bit
result. The adder is usually the critical
path in these apps.

July 199848 PERSONAL ENGINEERING

Fig 4—The LPM_MULT function provides support for constant-coefficient
multipliers in Altera devices.

Table 3—The logic
and time required

for a multiplier
with one constant

and one variable
input are much
lower than for
multipliers that

handle two
variable inputs.

Multiplier XC4000E Logic Blocks
XC4000E-1

Performance

8x8 parallel,
area optimized (Ref 5)

54 83 MHz

8x8 parallel,
performance optimized

(Ref 5)
70 97 MHz

8-bit constant,
8-bit variable

19 > 100 MHz

EDA
EXPERT COLUMN

style directly affects the number of
XC4000E logic blocks required to
build the design and the resulting
performance. Connecting a constant
value to an input on a 8 x 8-variable
multiplier reduces its size, but not to
the extent of the technique described
here. In general, a constant-coefficient
multiplier is about a quarter to a third
the size of an area-optimized multi-
plier and as fast or faster than a per-
formance-optimized multiplier. Re-
sults for other FPGA architectures
with 4-input LUTs are comparable,
assuming optimal implementation.

Luckily, a few FPGA vendors of-
fer direct support to build constant-
coefficient multipliers. One of the bet-
ter tools is the Xilinx Core Generator
(Ref 6). It produces nearly optimal
solutions for constant-coefficient mul-
tipliers including relative placement
information for maximum perfor-
mance. The bit width of the input

ate a constant-coefficient multiplier,
you must indicate to the LPM_MULT
function that one of the inputs is a
constant. Fig 4 demonstrates this in-
dication via the INPUT_B_IS_CONSTANT
parameter. You create the constant
value in this example using the Altera
LPM_CONSTANT function. PE&IN

xapp054.pdf).
3. “RGB2YcrCb & YcrCb2RGB Color
Space Converters”, Intellectual Prop-
erty Products Data Sheet, Feb 1997,
Altera Corp (www.altera.com/docu-
ment/ds/rgb.pdf).
4. Jack, K, Video Demystified: A Hand-
book for the Digital Engineer, Ch 3,
1993. HighText Publications ISBN
1-878707-09-4 (www.optimagic.com/
books.html#Video).
5. Core Solutions Data Book; Xilinx
Inc, Feb 1998 (www.xilinx.com/products/
logicore/core_sol.htm).
6.”Xilinx CORE Generator”, Xilinx Inc
(www.xil inx.com/products/logicore/
coregen/index.htm).

Editorial Feedback
This article’s value to me was:

High—263 Average—264 Low—265

and of the coefficient is user select-
able (Fig 3). Additionally, the core
generator automatically creates a
symbol for various schematic editors,
an HDL template file for instantiat-
ing the core in VHDL or Verilog as
well as HDL simulation models.

Altera also offers some support
through the LPM_MULT multiplier
library primitive included with
Altera’s Max+Plus II development
package. This general-purpose mul-
tiplier function allows users to specify
bit widths and pipelining. To gener-

Acknowledgment

The author thanks Ken Chapman from
Xilinx for introducing the above concept
and pioneering this work in FPGAs.

References

1. Knapp, S, “FPGA lookup tables
build flexible pattern matchers,”
PE&IN, May 1998, pgs 56-60.
2. Chapman K, “Constant Coefficient
Multipliers for the XC4000E,” Appli-
cation Note XAPP 054, Dec 11, 1996,
Xilinx Inc (www.xilinx.com/xapp/

