EXPERT COLUMN

Support options for programmable logic
don't differ much from board design

Steve Knapp

One must consider many options
when purchasing hardware and soft-
ware for programmable-logic design.
Choosing the right solution takes
some time to evaluate various prod-
ucts. Some products demo well but
come up short when you use them
through the complete design process.
Before embarking on a new design
path, one has to learn something
about the tools involved. The meth-
odology and software engineers use
to complete a programmable-logic
design are similar to those used for a
board design. This article provides a
basic overview of the design process
and discusses the costs of associated
hardware and software.
Programmable-logic design invari-
ably involves four fundamental steps
(Fig 1):
= design entry
= physical implementation, usually
performed in software
= design verification, including simu-
lation and in-system debugging
= device programming.

Steven K Knapp is the founder and president of
OptiMagic Inc (Aptos, CA, info@optimagic.com),
a firm that develops intellectual property and
design software for programmable logic.
Prior to founding this firm he held various
applications, engineering and manage-
ment positions at Xilinx and Intel's former
programmable-logic division.

PERSONAL ENGINEERING M September 1997

Design entry

A variety of tools are available to
perform the first step, design entry.
Some designers prefer to use their
favorite schematic editors, while oth-
ers want to specify a design with a
hardware-description language such
as Verilog, VHDL or ABEL. Still oth-
ers choose to combine both methods
in the same design. An on-going battle
brews about which technique is best.

Traditionally, schematic-based
tools provided experienced design-
ers with more control over the physi-
cal placement and partitioning of
logic on a device. However, this ex-
tratailoring takes time. Likewise, lan-

guage-based tools allowed quick de-
sign entry but often at the cost of
lower performance or density, al-
though synthesis for language-based
designs has significantly improved in
the last few years, especially for FPGA
design. In either case, learning the
architecture and the tool help you cre-
ate a better design. Technology-igno-
rant design is possible, but at the ex-
pense of density and performance.
To help speed development with
common design sections in any of
these environments, many chip ven-
dors provide intricate elements
known as cores. These specialized el-
ements, comprising such functional-
ity as a PCl-bus interface or a DMA

Fig 1—Design
flow for i

programmable
devices differs
slightly from

Design Entry

- Schematic capture
- Language-based entry

Functional Simulation

- Verify correct logic functionality
- Estimated timing or no timing

v

board design.
Several
simulation and
analysis tasks v

Timing Simulation
- Uses post-placement timing info

A 4

can take p|ace in Design Implementation
- Design translation/synthesis
para”el for Iarge, - Design rule checking
mu Itlenglneer - Logic partitioning/fitting
projects.

- Block placement
- Routing
- Create programming file

Static Timing Analysis
- Uses post-placement timing info

- Faster results than timing
simulation

A\ 4
A 4

In-System Debugging

A

- For reprogrammable parts P

- Use with other system software
and hardware

Device Programming

L

Design Verification :

53

EXPERT COLUMN

EDA

Minimum Usable Machine

Recommended Machine

* 66-MHz 486

¢ 16M bytes of RAM

* 50M bytes of disk space
* mouse

e 2 serial ports

e 1 parallel port

¢ SVGA graphics (800 X 600) .

e 200-MHz or faster Pentium, Pentium Pro, Pentium Il
e 64M to 128M bytes of RAM

* 500M bytes of disk space

* mouse

e 2 serial ports

e 1 parallel port

SVGA or better graphics

* modem and Internet service

Table 1—Minimum and recommended PCs for programmable-logic design.

controller, are an increasingly impor-
tant addition to the programmable-
logic world. Core providers imple-
ment and verify these predefined
functions in programmable-logic ele-
ments. Cores have been available for
gate arrays for several years, but now
that FPGA devices push beyond the
50,000-gate density level, cores should
become a popular design-entry tool
for programmable logic, as well.

Physical implementation

After an engineer enters and syn-
thesizes a design (if using an HDL
instead of a schematic for entry), it’s
ready for implementation on the tar-
get device. This first step involves
converting the design into a format
that the family-specific implementa-
tion tools recognize. Most implemen-
tation tools (also known as back-end
tools) read standard netlist formats,
and the translation process is usually
automatic.

Once the back-end tools translate
an incoming netlist, they perform a
design-rule check and optimize it.
Then the software partitions designs
into the logic blocks available on the
device. Partitioning is an important
step for both FPGAs and CPLDs be-
cause it results in higher-routing
completion and better performance
for FPGAs and increased density and
performance for CPLDs.

Once it partitions a design into
logic blocks, the implementation soft-

54

ware searches for the best location to
place each block among all of the pos-
sibilities. The primary goal is to re-
duce required routing resources and
maximize system performance. This
operation is compute intensive for
FPGAs and larger CPLDs because the
implementation software monitors
routing length and track congestion
while placing a large number of
blocks. In some systems, the software
also tracks path delays in order to
meet user-specified timing con-
straints. Overall, the process mimics
printed circuit-board placement and
routing. After completing the place/
route process, the software creates a
binary programming file that config-
ures the device, much like a board-
layout package produces Gerber files

at the end of its design flow.

In large or complex applications,
the software might not be able to place
and route the design. Some packages
try different options or run many it-
erations in an attempt to obtain a fully
routed design. Generally, some de-
signers try to use less than 85% of
available device resources. This tech-
nique gives the software extra re-
sources to help route a design. Also,
some vendors supply floorplanning
tools to aid in physical layout, which
is especially important for larger
FPGAs because some tools have prob-
lems recognizing design structure. A
good floorplanning tool allows de-
signers to convey this structure to the

place/route software.

Design verification

Design verification exists at vari-
ous levels and steps throughout this
design process. Engineers should rec-
ognize several fundamental types of
verification as applied to program-
mable logic. Functional simulation
occurs in conjunction with design en-
try, but before place and route, to
verify correct logic functionality,
while full-timing simulation must
wait until after the place/route step.
Then the software backannotates logic
and routing delays to the netlist for
simulation. While simulation is al-
ways a good idea, programmable
logic usually doesn’t require the same
exhaustive timing stimulation that
gate arrays do.

In a gate array, full-timing simula-
tion is important because the devices
are mask-programmed and therefore
not changeable. In addition, a design
change typically involves thousands
of extra dollars in non-recurring ex-
penses (NRE) and weeks of time.
Compare this penalty to a program-
mable device where changes are pos-
sible in minutes to hours at little or
no cost. With in-system program-
mable (ISP) devices, such as SRAM-
based FPGAs and ISP CPLDs,
changes are possible even while the
parts are mounted in the system.

One successful and popular tech-
nique for programmable logic is to
functionally simulate a design to
guarantee proper logic execution,
verify timing using a static timing
calculator and then verify complete
functionality by testing the design in
the system.

Some device vendors supply ad-
ditional in-system debugging capa-
bilities. For example, Xilinx ships a
small pod called an XChecker cable
that connects to a PC’s serial port and
allows downloading of a design. With

PERSONAL ENGINEERING H September 1997

a few simple additions to a design
and board, the XChecker cable can
stop or single-step the system clock
and read back the state of internal
flip-flops. Likewise, Actel’s Action
Probes provide access to internal
nodes within its antifuse based
FPGAs. However, keep one caveat in
mind—even though in-system de-
bugging is quick and relatively easy,
don’t view it as a complete replace-
ment for simulation.

Device programming

After creating and simulating a
programming file, you’re ready to
program the device. The method de-
pends on the target technology. Most
programmable-logic technologies, in-
cluding the PROMs used with SRAM-
based FPGAs, require some sort of a
device programmer. For a nominal
fee, a local distributor could perform
production programming, but you
generally need a low-volume device
programmer for development and
prepro-duction work.

In-system programmable devices,
including SRAM-based FPGAs, might
not require a physical programmer,
but they do need some intelligent sys-
tem resource to download the file into
the device. In this case, a board de-
sign must account for this require-
ment by providing programming
support with a microprocessor, mi-
cro-controller or a JTAG test port.

How much does it cost?

No matter how device program-
ming takes place, you must pay for
tools somewhere along the line. A
common question when starting out
in programmable logic is “How much
will it cost?” Like the punch line to
the old joke, it all depends on how
much you want to spend. Engineers

PERSONAL ENGINEERING M September 1997

can get started for less than $500 or
can spend more than $20,000, depend-
ing on the desired features, capabili-
ties, and interfaces.

With design software you’ll find
various options at $500 and below.
Many vendors—including Actel, Lat-
tice, Motorola, Philips and Xilinx—
supply downloadable or free demo
versions of their software for evalua-
tion purposes. Most of these pack-
ages allow you to create complete de-
signs for one or a few of their smaller
devices (see the Resources list at the
end of this column). At just below
$500, Xilinx supplies complete sche-
matic and simulation support for its
lower-density FPGAs and all of its
CPLD products. Altera offers a simi-
lar system, including logic synthesis,
for under $1000.

Generally plan on spending $2500
to $20,000 for complete software, in-
cluding logic-synthesis entry and
broad support for a range of densi-
ties (all from one vendor, of course).
Most programmable-logic suppliers
don’t want the price of the develop-
ment system to be an obstacle to a
large-volume design. Additionally,
most vendors provide the full soft-
ware on a free evaluation basis for 30
days or more. Most also offer signifi-
cant multiuser or site-license dis-
counts. However, don’t forget the ex-
pense of software maintenance; most
vendors charge roughly 15% of the
purchase price per year for updates.

Computer hardware

Another expense in creating pro-
grammable logic is the computer that
runs all this wonderful software. You
might handle the job with an old
legacy machine sitting around the of-
fice if it has the necessary resources.
Table 1 shows the minimum usable
machine and the recommended ver-

55

EXPERT COLUMN

EDA

sion. Actual requirements depend
somewhat on the tools, device family
and selected device, so it’s usually
best to contact the vendor about spe-
cific requirements. Generally, CPLDs
require less computing power than
do higher-density FPGAs, so a less-
capable machine should work fine.
Engineers purchasing a hew ma-
chine for the job should realize they
gain no benefit from an MMX-capable
processor for PLD software. A dual-
processor machine is beneficial, es-
pecially when working with bigger
(about 20,000 gates and above) FPGA
devices. The software, even under
Windows NT, doesn’t execute any
faster on a dual-processor machine,
but the extra processor allows you to
continue using the machine, while the
other processor is consumed with

Space left intentionally blank.

EXPERT COLUMN

EDA

placing and routing a large design.
Be sure to buy enough memory to
support the extra processor.

Larger devices, some now push-
ing past the 100,000-gate range, are
massive memory hogs. If you plan
on using these behemoths, be sure to
stock up on enough RAM. Plan on a
minimum of 64M bytes, with some
vendors recommending 128M bytes
or more. The bad news with memory
requirements is that they’ll only get
worse.

Another consideration is the oper-
ating system. Most vendors today
support either Windows 95 or NT 4.0
or plan to do so in the immediate
future. Anyone still using Windows
3.1 should plan on upgrading.

A modem and Internet connection
are also no longer just nice to have.
The various software and device ven-
dors typically offer on-line technical
support including software upgrades
and the latest technical information.
Some have just started releasing web-
based software tools such as the Xilinx
LogiCore PCI configuration tool. Also
the Internet connection allows you to
stay in contact with fellow engineers
through newsgroups. One of the most

relevant newsgroup to designers is
COMP.ARCH.FPGA.

Programming support

Beyond a computer, you’ll prob-
ably need a device programmer. A
wide variety of units offer various
cost-flexibility tradeoffs. Most device
vendors sell a dedicated or point-so-
lution programmer, which is gener-
ally far less expensive (starting from
about $500) than a more universal
programmer but might require a
separate purchase for each new de-
vice family. Universal programmers
are more expensive (from $2500) but
are recommended for engineers who
plan to work with a variety of de-
vices from multiple vendors.
Antifuse-based devices usually re-
quire a more sophisticated program-
mer because the unit performs some
device testing and antifuse integrity
checking. Also, quad flat packages
and other surface-mount components
might need expensive sockets.

If you're using SRAM-based
FPGAs and plan to download the de-
sign from system memory to the
FPGA with a processor or if you plan

to have a system boot from an exter-
nal byte-wide EPROM, an additional
programmer might not be neces-
sary—a byte-wide EPROM program-
mer works fine. Likewise, if you’re
using ISP or downloadable devices,
again a programmer might not be nec-
essary. The download cable should suf-
fice for most prototyping. PE&IN

Resources

A few of the many resources available on
the world wide web to help engineers
with FPGA design include the following:

Various programmable-logic design
software: www.optimagic.com/
software.html

Low-cost or free design software:
www.optimagic.com/lowcost.html

Xilinx web-base PCI core configura-
tion tool: www.xilinx.com/products/
logicore/cg_intro.htm

Various programmable-logic-related
newsgroups: www.optimagic.com/
newsgroups.html

Editorial Feedback
This article’s value to me was:
High—263 Average—264 Low—265

Space left intentionally blank.

