EXPERT COLUMN

Parallel processing in FPGAs rivals

DSP speed

Steve Knapp

My previous column described a fast,
efficient method to implement multi-
pliers where one of the inputs is a
constant value (Ref 1). Algorithms
employing fixed coefficients abound,
especially in image processing and
digital signal processing. For ex-
ample, the equation Cr = 0.439R’ -
0.368G’ - 0.071B’ + 128 is part of a
calculation to convert between the
RGB and YCrCb color spaces in digi-
tal video. Another example is the
equation y = coXg + CqXq + CoXo + ... +
¢ X, Which gives a generalized equa-
tion for many filtering algorithms.

The standard method to imple-
ment these algorithms is with a DSP
chip or microprocessor. A typical de-
vice incorporates a high-performance
multiply/accumulate (MAC) unit,
which in most apps performs high-
speed multiplication of a variable in-
put and a constant and then accumu-
lates (adds) the results from many
operations to produce a final result.

The MAC unit necessarily needs
|
Steven K Knapp is the founder and
president of OptiMagic Inc (Aptos, CA,
www.optimagic.com), a firm that devel-
ops intellectual property and design soft-
ware for programmable logic. Prior to
founding this firm, he held various appli-
cations, engineering and management po-
sitions at Xilinx and Intel’s former program-
mable-logic division.

60

to be very high performance because
a DSP reuses a single shared resource
to implement an inherently parallel
algorithm such as a digital filter. It
time-division multiplexes the algo-
rithm in the MAC to conserve logic.
Each separate multiply and accumu-
late step happens sequentially. The
MAC must be fast to obtain reason-
able performance.

Field-programmable gate arrays
(FPGAs) generally can’t perform a
single multiply/accumulate step as
fast as a modern DSP. However, with
a little architectural magic, an FPGA
outperforms a leading-edge DSP be-
cause instead of reusing one extremely
fast MAC dozens of times per calcula-
tion, it can calculate dozens of moder-
ately fast MAC steps in parallel.

This column describes general tech-
niques for implementing multiply/
accumulate functions in an FPGA,
building on techniques described in
earlier columns (Refs 1 and 2).

Mutliply/accumulate steps

Fig 1 shows a fully parallel imple-
mentation of the general algorithm
in the following equation:

Y = koXg + Ky Xq + koXo + kgXg
Each variable input X, through X5 is
multiplied by a constant coefficient.
Summing the four products deter-
mines the final result, Y. Implemented
in a typical DSP, this simple equation
requires four distinct multiply/accu-
mulate steps plus some overhead in-
structions to move data. Recall from

=)

Fig 1—An FPGA Constantl-_coefficient
outperforms a multplier
programmable N
DSP processor i \

by handling Xo ! koXo
multiply/ ;
accumulate ;
operations in !
X + kq X
parallel. 1 1
|
|
|
XZ_ k2X2
|
|
|
1
|
)(3—‘— k3)(3
|
|
|

LIS

PERSONAL ENGINEERING [October 1998

EXPERT COLUMN

EDA

RESULT

Fig 2—A
0io1 shift-and-add
________________ approach
|
‘ »y implifi
Parallel/Serial XBIT | +2 ‘ simplifies the
Shift Register [L ‘ logic required
‘ ‘ D Q 0 .
—_—— ‘ co | to build a
Ny o multiplier.
K —] : + 0 Q) »%
|
‘ 0
|
1011 LA LsB !
‘ / | Y=kx
O e) : |
\ 33 |
| s2 ‘
\ &S i
X.BJT MUX | %n: —»ll
1 1011 5= ‘
| 1) ‘
0 000 0— | :
>
1 101 +=—— | |
Scaling |
00000 L Accumulat(g)r\
o01101111 ~~~ T TTTTTTTT

Ref 1 how to implement a constant-
coefficient multiplier efficiently in
lookup-table-based FPGAs, and then
you can implement this simple func-
tion in parallel on even the smallest
one.

Unfortunately, as word size or the
number of products increases, hard-
ware complexity usually increases
dramatically. Is there a way to re-
duce the required logic? Luckily, par-
allel algorithms allow a broad range
of speed vs area tradeoffs.

The easiest place to reduce logic is
in the constant-coefficient multipli-
ers. Instead of using a parallel ap-
proach, might it save logic to use the
classic serial shift-and-add approach?

An old classic

One possible multiplier implemen-
tation is the classic shift-and-add ap-
proach (Fig 2). Here you load the par-
allel data input X into a parallel-to-
serial shift register. On every clock

62

edge, the LSB from the shift register,
XBIT, selects a value from the 2:1
multiplexer. If the shifted bit is Zero
the mux feeds a Zero to the scaling
accumulator; if the shifted bit equals
One, the constant value k appears on
the accumulator input.

The scaling accumulator performs
two functions. First, it sums the pre-
viously accumulated values with the
partial products provided on a clock
edge by the multiplexer output. Sec-
ond, it shifts the accumulated value
to the right on every clock edge, per-
forming a divide-by-two and thereby
adjusts the result by its proper binary
weight. You perform the right-shift
operation by wiring the proper feed-
back bits from the register back into
the accumulator. The LSB from the
adder feeds into the serial input on a
serial-to-parallel shift register. Dur-
ing the calculation, the lower bits of
the result appear as outputs from the
shift register. The output of the accu-
mulator—a registered adder with

feedback—and its carry output pro-
vide the upper bits of the result. To
demonstrate the function, annotations
on Fig 2 show the constant value set
to 11 (k = 1011 binary) and the vari-
able input set to 5 (X = 0101 binary).
The result after four clock cycles is 55
(00110111 binary). The lower three
bits of the result shift from the accu-
mulator into a serial-to-parallel shift
register. The upper bit value is the
carry output from the accumulator.

The bit-width of the value X deter-
mines the processing time. In this ex-
ample, X is a 4-bit entity. Conse-
quently, the shift-and-add multiplier
supplies a new result every four clock
cycles. The critical path limiting the
clock performance is usually the carry
propagation time through the adder.

The circuit in Fig 2 could effec-
tively replace each constant-coeffi-
cient multiplier in Fig 1. Contrary to
expectations, this shift-and-add ap-
proach actually increases the amount
of logic required, especially for nar-
rower word widths. Implementing
constant-coefficient multipliers using
LUTs in FPGASs is much more effi-
cient. Should you therefore discard
this entire approach or is there a way
to restructure the problem and make
it more efficient?

Serial-distributed arithmetic

Using a technique called distrib-
uted arithmetic (Refs 3, 4 and 5), you
can reorganize the function in Fig 1
and fit it into a structure similar to
the diagram in Fig 2. This approach
has the added advantage that it ab-
sorbs the adder tree, conserving logic.
In Fig 2, a bit shifted out from the X
input determines whether the multi-
plexer selects the constant k or Zero.
Fig 3 shows how this technique is

PERSONAL ENGINEERING [October 1998

expandable to process all four inputs
simultaneously. Instead of selecting
a single constant, this alternative se-
lects various precomputed combina-
tions of the four constants depending
on the bits shifted out from the four
parallel-to-serial shift registers.

For example, assume the outputs
shifted from X5, X; and X, are Zeroes,
while the output shifted from X, is a
One. As aresult, the mux inputs S[3:0]
= 0100 select a precomputed value,
which is X,’s corresponding constant
k,. What happens if the values from
the shift registers are mixed Ones and
Zeroes? Assume that S[3:0] = 1100.
Now the precomputed value k; + k,
appears on the multiplexer output
and into the scaling accumulator.

The new approach in Fig 3 behaves
much like the one in Fig 2. The pri-
mary difference is that all four multi-
plications happen in parallel and
share a larger multiplexer. It still pro-
duces a new result every four clock
cycles. In fact, additional inputs and
coefficients have no effect on the num-
ber of clock cycles, only the word
width of the incoming values. For an
n-bit word, the circuit requires n clock
cycles to complete one calculation,
regardless of the number of inputs or
coefficients. The critical path is still
the carry delay through the accumu-
lator. However, combining all the pre-
computed constants into one multi-
plexer function reduces overall re-
source requirements.

EXPERT COLUMN

EDA

Atfirst glance, it might appear that
the 16:1 mux in this distributed-arith-
metic approach requires a significant
amount of logic. However, its 16 in-
puts are constants, and it requires
only the four select inputs S[3:0]. As
described in Ref 2, if a function has
four inputs and one output, then it
fits into the 4-input lookup tables
(LUTSs) in some FPGAs. Here the 16:1
multiplexer reduces down to a few
lookup tables. The maximum num-
ber of LUTs depends on the width of
the widest coefficient value—the co-
efficient needn’t match the parallel
input width—plus the ceiling of the
log, of the number of coefficients:
number_of_LUTs = max(coefficient_width)
+ ceil(log2(number_of_coefficients)).

This space left blank intentionally.

EXPERT COLUMN

—.

Parallel/Serial
Shift Register

;X3
Parallel/Serial
Shift Register [1S3 |go

—— s1 6
Ka+kotky+ko e 1111

Kgtkotk, w1110

—

Parallel/Serial
Shift Register

—

Parallel/Serial
Shift Register

katkp+ko sl 1101

kg+k, 1100

Kg+kq ke m— 1011
kgtk, w1010
K3+Ko sl 1001

k3 w1000

Kotkq+ko sl 0111
kptk, me—0110
kotKp memm 0101

K2 st 0100
ky+ko 0011
ki s— 0010

Ko e 0001

0 == 0000

$3— T |-
$2—
s1—
S0—

LUT

Y=ko+Xo
+ kq+xq
+ kot+Xo
+ k3txg

=
Z3
T
c D
(a3}
=
=
S&

N
%U’)

Scaling |
Accumulator

Because the coefficient values are
precomputed, the additions might
generate a carry, thus requiring a
wider word width. For instance, add-
ing four 4-bit values might necessi-
tate a 6-bit result. Thus if each coeffi-
cient is four bits wide and there are
four coefficients, then the design re-
quires six LUTs and the input to the
scaling accumulator is six bits wide.

With four 4-bit inputs and four
4-bit coefficients, the scaling accumu-
lator produces a 10-bit result. The

64

Fig 4—Multiply/
accumulate
(MAC) functions
with more than
four inputs must
be cascaded
with adders
before the final
scaling
accumulator.

Fig 3—A serial-
distributed
arithmetic
approach
reduces the
constant-
coefficient
multipliers and
the adder tree to
a lookup table.

adder has six inputs from the multi-
plexer or LUTSs, and the scheme holds
the six outputs in flip-flops. It shifts
the three lesser significant bits (n-1)
into the serial-to-parallel shift regis-
ter. The carry output from the adder
is the result’s MSB.

The architecture in Fig 3 works fine
given only four X inputs and corre-
sponding coefficients. Fig 4 shows
how to extend the architecture to
practically any number of inputs.
Groups of four inputs fit nicely into a
4-bit chunk, whose coefficients you
precompute and place in a LUT. The
scheme sums outputs from multiple
chunks in an adder tree before arriv-
ing at the scaling accumulator. While
each adder contributes to the critical
path, optional pipelining registers—
abundant in LUT-based architec-

| | abit chunk
f— i |
|
| — |
} Coefficients }
ko, K1, ko, k3
} —'Xl }
| |
| —_— |
| |
} —'Xz LUTs !
|
} > |
|
| |
| —
1 L
| |
| > |
I I S
— e
sE
‘X4 @ §
_
Coefficients |-
ks kg kg k
_’Xs 4, K5, Kg, K7
_’Xe LUTs 5
I
'X7 j
= L:] = optional pipelining register

PERSONAL ENGINEERING [October 1998

tures—improve performance but at
the cost of additional clock latency.

Next steps

The concepts described here can
extend to other application. Digital
filtering involves significant amounts
of multiply/Zaccumulate operations.
Finite-impulse response (FIR) filters,
for example, accept one data input,
and intermediate values are time-de-
layed versions of the original input.
Fig 5 shows how modifying the
dataflow within the 4-bit chunk cre-
ates a structure more suitable for
building FIR filters. An initial paral-
lel-to-serial shift register captures a
new n-bit data word every n clock
cycles. The shift-register’s output feeds
the LUT containing precomputed co-
efficients, and the same output feeds
a cascaded chain of serial-in/serial-
out shift registers. Each shift register
is part of a single tap in the filter.

My next column demonstrates
how to build efficient high-perfor-
mance FIR filters in FPGAs using the
techniques described here. Incredible
performance levels are possible by
exploiting the FPGA'’s ability to
implement parallel operations. PE&IN

References

1. Knapp, S, “Constant-coefficient
multipliers save FPGA space, time,”
PE&IN, July 1998, pgs 45-48
(www.pein.com/1998/PEIN0798/
0798ecs.pdf).

2. Knapp, S, “FPGA lookup tables
build flexible pattern matchers,”
PE&IN, May 1998, pgs 56-60
(www.pein.com/1998/PEIN0398/
0598ecs.pdf).

3. Goslin, G R, “A Guide to Using
FPGAs for Application-Specific Digi-
tal Signal Processing,” Xilinx Inc
(www.xilinx.com/appnotes/dspguide.pdf).
4. Minster, L, “The Role of Distrib-

Fig 5—Modifying
ﬁ the data flow
Xo through the 4-bit
chunk makes it
R Coefficients more efficient
i ko, kl’ k2, k3 for digital
filtering.
[
L
LUTs —
[
N R
SN
L_» Serial input to next 4-bit chunk

PERSONAL ENGINEERING W October 1998

65

EXPERT COLUMN

EDA

uted Arithmetic in FPGA-based Sig-
nal Processing,” (http://home.att.net/
~pcuenin/theory1.PDF).

5. New, B, “A distributed arithmetic ap-
proach to designing scalable DSP chips,”
EDN, Aug 17, 1995 (www.ednmag.com/
reg/1995/081795/17df5.cfm).

Editorial Feedback
This article’s value to me was:
High—266 Average—267 Low—268

This space left blank intentionally.

