
October 199860 PERSONAL ENGINEERING

This column describes general tech-
niques for implementing multiply/
accumulate functions in an FPGA,
building on techniques described in
earlier columns (Refs 1 and 2).

Mutliply/accumulate steps

Fig 1 shows a fully parallel imple-
mentation of the general algorithm
in the following equation:

 Y = k0X0 + k1X1 + k2X2 + k3X3
Each variable input X0 through X3 is
multiplied by a constant coefficient.
Summing the four products deter-
mines the final result, Y. Implemented
in a typical DSP, this simple equation
requires four distinct multiply/accu-
mulate steps plus some overhead in-
structions to move data. Recall from

Steven K Knapp is the founder and
president of OptiMagic Inc (Aptos, CA,
www.optimagic.com), a firm that devel-
ops intellectual property and design soft-
ware for programmable logic. Prior to
founding this firm, he held various appli-
cations, engineering and management po-
sitions at Xilinx and Intel’s former program-
mable-logic division.

EXPERT COLUMN EDA

Y = k0X0

+ k1X1

+ k2X2

+ k3X3

X0

X1

X2

X3

k0X0

k1X1

k2X2

k3X3

+

+

+

AddMultiply

Constant-coefficient
multiplier

Fig 1—An FPGA
outperforms a
programmable
DSP processor

by handling
multiply/

accumulate
operations in

parallel.

Parallel processing in FPGAs rivals
DSP speed

Steve Knapp

My previous column described a fast,
efficient method to implement multi-
pliers where one of the inputs is a
constant value (Ref 1). Algorithms
employing fixed coefficients abound,
especially in image processing and
digital signal processing. For ex-
ample, the equation Cr = 0.439R’ -
0.368G’ - 0.071B’ + 128 is part of a
calculation to convert between the
RGB and YCrCb color spaces in digi-
tal video. Another example is the
equation y = c0x0 + c1x1 + c2x2 + … +
cnxn, which gives a generalized equa-
tion for many filtering algorithms.

The standard method to imple-
ment these algorithms is with a DSP
chip or microprocessor. A typical de-
vice incorporates a high-performance
multiply/accumulate (MAC) unit,
which in most apps performs high-
speed multiplication of a variable in-
put and a constant and then accumu-
lates (adds) the results from many
operations to produce a final result.

The MAC unit necessarily needs

to be very high performance because
a DSP reuses a single shared resource
to implement an inherently parallel
algorithm such as a digital filter. It
time-division multiplexes the algo-
rithm in the MAC to conserve logic.
Each separate multiply and accumu-
late step happens sequentially. The
MAC must be fast to obtain reason-
able performance.

Field-programmable gate arrays
(FPGAs) generally can’t perform a
single multiply/accumulate step as
fast as a modern DSP. However, with
a little architectural magic, an FPGA
outperforms a leading-edge DSP be-
cause instead of reusing one extremely
fast MAC dozens of times per calcula-
tion, it can calculate dozens of moder-
ately fast MAC steps in parallel.

October 199862 PERSONAL ENGINEERING

EDA
EXPERT COLUMN

1 0 1 1

0 0 0 0

1 0 1 1

0 0 0 01 24444 34444

6 74444 84444MUX

+

X
0101

XBIT

k

1011

0

1

0

MUX

C0

+2

D Q

D Q

Se
ri
al

/P
ar

al
le

l
Sh

ift
 R

eg
is

te
r

Parallel/Serial
Shift Register

0

0
1
1
0

LSB
Y=kX

11
11
11

Scaling
Accumulator

1

0

1

0

XBIT}

RESULT
1 244444 344444
0 0 1 1 0 1 1 1

RESULT

Fig 2—A
shift-and-add
approach
simplifies the
logic required
to build a
multiplier.

Ref 1 how to implement a constant-
coefficient multiplier efficiently in
lookup-table-based FPGAs, and then
you can implement this simple func-
tion in parallel on even the smallest
one.

Unfortunately, as word size or the
number of products increases, hard-
ware complexity usually increases
dramatically. Is there a way to re-
duce the required logic? Luckily, par-
allel algorithms allow a broad range
of speed vs area tradeoffs.

The easiest place to reduce logic is
in the constant-coefficient multipli-
ers. Instead of using a parallel ap-
proach, might it save logic to use the
classic serial shift-and-add approach?

An old classic

One possible multiplier implemen-
tation is the classic shift-and-add ap-
proach (Fig 2). Here you load the par-
allel data input X into a parallel-to-
serial shift register. On every clock

edge, the LSB from the shift register,
XBIT, selects a value from the 2:1
multiplexer. If the shifted bit is Zero
the mux feeds a Zero to the scaling
accumulator; if the shifted bit equals
One, the constant value k appears on
the accumulator input.

The scaling accumulator performs
two functions. First, it sums the pre-
viously accumulated values with the
partial products provided on a clock
edge by the multiplexer output. Sec-
ond, it shifts the accumulated value
to the right on every clock edge, per-
forming a divide-by-two and thereby
adjusts the result by its proper binary
weight. You perform the right-shift
operation by wiring the proper feed-
back bits from the register back into
the accumulator. The LSB from the
adder feeds into the serial input on a
serial-to-parallel shift register. Dur-
ing the calculation, the lower bits of
the result appear as outputs from the
shift register. The output of the accu-
mulator—a registered adder with

feedback—and its carry output pro-
vide the upper bits of the result. To
demonstrate the function, annotations
on Fig 2 show the constant value set
to 11 (k = 1011 binary) and the vari-
able input set to 5 (X = 0101 binary).
The result after four clock cycles is 55
(00110111 binary). The lower three
bits of the result shift from the accu-
mulator into a serial-to-parallel shift
register. The upper bit value is the
carry output from the accumulator.

The bit-width of the value X deter-
mines the processing time. In this ex-
ample, X is a 4-bit entity. Conse-
quently, the shift-and-add multiplier
supplies a new result every four clock
cycles. The critical path limiting the
clock performance is usually the carry
propagation time through the adder.

The circuit in Fig 2 could effec-
tively replace each constant-coeffi-
cient multiplier in Fig 1. Contrary to
expectations, this shift-and-add ap-
proach actually increases the amount
of logic required, especially for nar-
rower word widths. Implementing
constant-coefficient multipliers using
LUTs in FPGAs is much more effi-
cient. Should you therefore discard
this entire approach or is there a way
to restructure the problem and make
it more efficient?

Serial-distributed arithmetic

Using a technique called distrib-
uted arithmetic (Refs 3, 4 and 5), you
can reorganize the function in Fig 1
and fit it into a structure similar to
the diagram in Fig 2. This approach
has the added advantage that it ab-
sorbs the adder tree, conserving logic.
In Fig 2, a bit shifted out from the X
input determines whether the multi-
plexer selects the constant k or Zero.
Fig 3 shows how this technique is

October 1998PERSONAL ENGINEERING 63

EDA
EXPERT COLUMN

expandable to process all four inputs
simultaneously. Instead of selecting
a single constant, this alternative se-
lects various precomputed combina-
tions of the four constants depending
on the bits shifted out from the four
parallel-to-serial shift registers.

For example, assume the outputs
shifted from X3, X1 and X0 are Zeroes,
while the output shifted from X2 is a
One. As a result, the mux inputs S[3:0]
= 0100 select a precomputed value,
which is X2’s corresponding constant
k2. What happens if the values from
the shift registers are mixed Ones and
Zeroes? Assume that S[3:0] = 1100.
Now the precomputed value k3 + k2
appears on the multiplexer output
and into the scaling accumulator.

The new approach in Fig 3 behaves
much like the one in Fig 2. The pri-
mary difference is that all four multi-
plications happen in parallel and
share a larger multiplexer. It still pro-
duces a new result every four clock
cycles. In fact, additional inputs and
coefficients have no effect on the num-
ber of clock cycles, only the word
width of the incoming values. For an
n-bit word, the circuit requires n clock
cycles to complete one calculation,
regardless of the number of inputs or
coefficients. The critical path is still
the carry delay through the accumu-
lator. However, combining all the pre-
computed constants into one multi-
plexer function reduces overall re-
source requirements.

At first glance, it might appear that
the 16:1 mux in this distributed-arith-
metic approach requires a significant
amount of logic. However, its 16 in-
puts are constants, and it requires
only the four select inputs S[3:0]. As
described in Ref 2, if a function has
four inputs and one output, then it
fits into the 4-input lookup tables
(LUTs) in some FPGAs. Here the 16:1
multiplexer reduces down to a few
lookup tables. The maximum num-
ber of LUTs depends on the width of
the widest coefficient value—the co-
efficient needn’t match the parallel
input width—plus the ceiling of the
log2 of the number of coefficients:
number_of_LUTs = max(coefficient_width)
+ ceil(log2(number_of_coefficients)).

This space left blank intentionally.

October 199864 PERSONAL ENGINEERING

EDA
EXPERT COLUMN

LUTs

LUTs

= optional pipelining register

+
Sc

al
in

g

A
cc

u
m

u
la

to
r

X0

X1

X2

X3

X4

X5

X6

X7

Coefficients
k0, k1, k2, k3

Coefficients
k4, k5, k6, k7

4-bit chunk

Fig 4—Multiply/
accumulate

(MAC) functions
with more than

four inputs must
be cascaded
with adders

before the final
scaling

accumulator.

+

MUX

C0

+2

D Q

D Q

Se
ri
al

/P
ar

al
le

l
Sh

ift
 R

eg
is

te
r

0

0
1
1
0

LSB
Y=kX

11
11
11

Scaling
Accumulator

Parallel/Serial
Shift Register

Parallel/Serial
Shift Register

Parallel/Serial
Shift Register

Parallel/Serial
Shift Register

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

S3 S2
S1

S0

LUT

TS3

S2

S1

S0

 • ••

X2

X3 X0

X1

k3+k2+k1+k0

k3+k2+k1

k3+k2+k0

k3+k2

k3+k1+k0

k3+k1

k3+k0

k3

k2+k1+k0

k2+k1

k2+k0

k2

k1+k0

k1

k0

0

1
2

4
4

4
4

4
3

4
4

4
4

4

Y= k0+x0
 + k1+x1
 + k2+x2
 + k3+x3

Fig 3—A serial-
distributed
arithmetic
approach
reduces the
constant-
coefficient
multipliers and
the adder tree to
a lookup table.

Because the coefficient values are
precomputed, the additions might
generate a carry, thus requiring a
wider word width. For instance, add-
ing four 4-bit values might necessi-
tate a 6-bit result. Thus if each coeffi-
cient is four bits wide and there are
four coefficients, then the design re-
quires six LUTs and the input to the
scaling accumulator is six bits wide.

With four 4-bit inputs and four
4-bit coefficients, the scaling accumu-
lator produces a 10-bit result. The

adder has six inputs from the multi-
plexer or LUTs, and the scheme holds
the six outputs in flip-flops. It shifts
the three lesser significant bits (n-1)
into the serial-to-parallel shift regis-
ter. The carry output from the adder
is the result’s MSB.

The architecture in Fig 3 works fine
given only four X inputs and corre-
sponding coefficients. Fig 4 shows
how to extend the architecture to
practically any number of inputs.
Groups of four inputs fit nicely into a
4-bit chunk, whose coefficients you
precompute and place in a LUT. The
scheme sums outputs from multiple
chunks in an adder tree before arriv-
ing at the scaling accumulator. While
each adder contributes to the critical
path, optional pipelining registers—
abundant in LUT-based architec-

October 1998PERSONAL ENGINEERING 6565

EDA
EXPERT COLUMN

LUTs

Serial input to next 4-bit chunk

X0

Coefficients
k0, k1, k2, k3

Serial input to next 4-bit chunk

Fig 5—Modifying
the data flow
through the 4-bit
chunk makes it
more efficient
for digital
filtering.

tures—improve performance but at
the cost of additional clock latency.

Next steps

The concepts described here can
extend to other application. Digital
filtering involves significant amounts
of multiply/accumulate operations.
Finite-impulse response (FIR) filters,
for example, accept one data input,
and intermediate values are time-de-
layed versions of the original input.
Fig 5 shows how modifying the
dataflow within the 4-bit chunk cre-
ates a structure more suitable for
building FIR filters. An initial paral-
lel-to-serial shift register captures a
new n-bit data word every n clock
cycles. The shift-register’s output feeds
the LUT containing precomputed co-
efficients, and the same output feeds
a cascaded chain of serial-in/serial-
out shift registers. Each shift register
is part of a single tap in the filter.

Editorial Feedback
This article’s value to me was:

High—266 Average—267 Low—268

My next column demonstrates
how to build efficient high-perfor-
mance FIR filters in FPGAs using the
techniques described here. Incredible
performance levels are possible by
exploiting the FPGA’s ability to
implement parallel operations. PE&IN

References

1. Knapp, S, “Constant-coefficient
multipliers save FPGA space, time,”
PE&IN , July 1998, pgs 45-48
(www.pein.com/1998/PEIN0798/
0798ecs.pdf).
2. Knapp, S, “FPGA lookup tables
build flexible pattern matchers,”
PE&IN , May 1998, pgs 56-60
(www.pein.com/1998/PEIN0398/
0598ecs.pdf).
3. Goslin, G R, “A Guide to Using
FPGAs for Application-Specific Digi-
tal Signal Processing,” Xilinx Inc
(www.xilinx.com/appnotes/dspguide.pdf).
4. Minster, L, “The Role of Distrib-

uted Arithmetic in FPGA-based Sig-
nal Processing,” (http://home.att.net/
~pcuenin/theory1.PDF).
5. New, B, “A distributed arithmetic ap-
proach to designing scalable DSP chips,”
EDN, Aug 17, 1995 (www.ednmag.com/
reg/1995/081795/17df5.cfm).

This space left blank intentionally.

