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This column describes general tech-
niques for implementing multiply/
accumulate functions in an FPGA,
building on techniques described in
earlier columns (Refs 1 and 2).

Mutliply/accumulate steps

Fig 1 shows a fully parallel imple-
mentation of the general algorithm
in the following equation:

   Y = k0X0 + k1X1 + k2X2 + k3X3
Each variable input X0 through X3 is
multiplied by a constant coefficient.
Summing the four products deter-
mines the final result, Y. Implemented
in a typical DSP, this simple equation
requires four distinct multiply/accu-
mulate steps plus some overhead in-
structions to move data. Recall from
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Parallel processing in FPGAs rivals
DSP speed

Steve Knapp

My previous column described a fast,
efficient method to implement multi-
pliers where one of the inputs is a
constant value (Ref 1). Algorithms
employing fixed coefficients abound,
especially in image processing and
digital signal processing. For ex-
ample, the equation Cr = 0.439R’ -
0.368G’ - 0.071B’ + 128 is part of a
calculation to convert between the
RGB and YCrCb color spaces in digi-
tal video. Another example is the
equation y = c0x0 + c1x1 + c2x2 + … +
cnxn, which gives a generalized equa-
tion for many filtering algorithms.

The standard method to imple-
ment these algorithms is with a DSP
chip or microprocessor. A typical de-
vice incorporates a high-performance
multiply/accumulate (MAC) unit,
which in most apps performs high-
speed multiplication of a variable in-
put and a constant and then accumu-
lates (adds) the results from many
operations to produce a final result.

The MAC unit necessarily needs

to be very high performance because
a DSP reuses a single shared resource
to implement an inherently parallel
algorithm such as a digital filter. It
time-division multiplexes the algo-
rithm in the MAC to conserve logic.
Each separate multiply and accumu-
late step happens sequentially. The
MAC must be fast to obtain reason-
able performance.

Field-programmable gate arrays
(FPGAs) generally can’t perform a
single multiply/accumulate step as
fast as a modern DSP. However, with
a little architectural magic, an FPGA
outperforms a leading-edge DSP be-
cause instead of reusing one extremely
fast MAC dozens of times per calcula-
tion, it can calculate dozens of moder-
ately fast MAC steps in parallel.
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Fig 2—A
shift-and-add
approach
simplifies the
logic required
to build a
multiplier.

Ref 1 how to implement a constant-
coefficient multiplier efficiently in
lookup-table-based FPGAs, and then
you can implement this simple func-
tion in parallel on even the smallest
one.

Unfortunately, as word size or the
number of products increases, hard-
ware complexity usually increases
dramatically. Is there a way to re-
duce the required logic? Luckily, par-
allel algorithms allow a broad range
of speed vs area tradeoffs.

The easiest place to reduce logic is
in the constant-coefficient multipli-
ers. Instead of using a parallel ap-
proach, might it save logic to use the
classic serial shift-and-add approach?

An old classic

One possible multiplier implemen-
tation is the classic shift-and-add ap-
proach (Fig 2). Here you load the par-
allel data input X into a parallel-to-
serial shift register. On every clock

edge, the LSB from the shift register,
XBIT, selects a value from the 2:1
multiplexer. If the shifted bit is Zero
the mux feeds a Zero to the scaling
accumulator; if the shifted bit equals
One, the constant value k appears on
the accumulator input.

The scaling accumulator performs
two functions. First, it sums the pre-
viously accumulated values with the
partial products provided on a clock
edge by the multiplexer output. Sec-
ond, it shifts the accumulated value
to the right on every clock edge, per-
forming a divide-by-two and thereby
adjusts the result by its proper binary
weight. You perform the right-shift
operation by wiring the proper feed-
back bits from the register back into
the accumulator. The LSB from the
adder feeds into the serial input on a
serial-to-parallel shift register. Dur-
ing the calculation, the lower bits of
the result appear as outputs from the
shift register. The output of the accu-
mulator—a registered adder with

feedback—and its carry output pro-
vide the upper bits of the result. To
demonstrate the function, annotations
on Fig 2 show the constant value set
to 11 (k = 1011 binary) and the vari-
able input set to 5 (X = 0101 binary).
The result after four clock cycles is 55
(00110111 binary). The lower three
bits of the result shift from the accu-
mulator into a serial-to-parallel shift
register. The upper bit value is the
carry output from the accumulator.

The bit-width of the value X deter-
mines the processing time. In this ex-
ample, X is a 4-bit entity. Conse-
quently, the shift-and-add multiplier
supplies a new result every four clock
cycles. The critical path limiting the
clock performance is usually the carry
propagation time through the adder.

The circuit in Fig 2 could effec-
tively replace each constant-coeffi-
cient multiplier in Fig 1. Contrary to
expectations, this shift-and-add ap-
proach actually increases the amount
of logic required, especially for nar-
rower word widths. Implementing
constant-coefficient multipliers using
LUTs in FPGAs is much more effi-
cient. Should you therefore discard
this entire approach or is there a way
to restructure the problem and make
it more efficient?

Serial-distributed arithmetic

Using a technique called distrib-
uted arithmetic (Refs 3, 4 and 5), you
can reorganize the function in Fig 1
and fit it into a structure similar to
the diagram in Fig 2. This approach
has the added advantage that it ab-
sorbs the adder tree, conserving logic.
In Fig 2, a bit shifted out from the X
input determines whether the multi-
plexer selects the constant k or Zero.
Fig 3 shows how this technique is
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expandable to process all four inputs
simultaneously. Instead of selecting
a single constant, this alternative se-
lects various precomputed combina-
tions of the four constants depending
on the bits shifted out from the four
parallel-to-serial shift registers.

For example, assume the outputs
shifted from X3, X1 and X0 are Zeroes,
while the output shifted from X2 is a
One. As a result, the mux inputs S[3:0]
= 0100 select a precomputed value,
which is X2’s corresponding constant
k2. What happens if the values from
the shift registers are mixed Ones and
Zeroes? Assume that S[3:0] = 1100.
Now the precomputed value k3 + k2
appears on the multiplexer output
and into the scaling accumulator.

The new approach in Fig 3 behaves
much like the one in Fig 2. The pri-
mary difference is that all four multi-
plications happen in parallel and
share a larger multiplexer. It still pro-
duces a new result every four clock
cycles. In fact, additional inputs and
coefficients have no effect on the num-
ber of clock cycles, only the word
width of the incoming values. For an
n-bit word, the circuit requires n clock
cycles to complete one calculation,
regardless of the number of inputs or
coefficients.  The critical path is still
the carry delay through the accumu-
lator. However, combining all the pre-
computed constants into one multi-
plexer function reduces overall re-
source requirements.

At first glance, it might appear that
the 16:1 mux in this distributed-arith-
metic approach requires a significant
amount of logic. However, its 16 in-
puts are constants, and it requires
only the four select inputs S[3:0]. As
described in Ref 2, if a function has
four inputs and one output, then it
fits into the 4-input lookup tables
(LUTs) in some FPGAs. Here the 16:1
multiplexer reduces down to a few
lookup tables. The maximum num-
ber of LUTs depends on the width of
the widest coefficient value—the co-
efficient needn’t match the parallel
input width—plus the ceiling of the
log2 of the number of coefficients:
number_of_LUTs = max(coefficient_width)
+ ceil(log2(number_of_coefficients)).

This space left blank intentionally.
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reduces the
constant-
coefficient
multipliers and
the adder tree to
a lookup table.

Because the coefficient values are
precomputed, the additions might
generate a carry, thus requiring a
wider word width. For instance, add-
ing four 4-bit values might necessi-
tate a 6-bit result. Thus if each coeffi-
cient is four bits wide and there are
four coefficients, then the design re-
quires six LUTs and the input to the
scaling accumulator is six bits wide.

With four 4-bit inputs and four
4-bit coefficients, the scaling accumu-
lator produces a 10-bit result. The

adder has six inputs from the multi-
plexer or LUTs, and the scheme holds
the six outputs in flip-flops. It shifts
the three lesser significant bits (n-1)
into the serial-to-parallel shift regis-
ter. The carry output from the adder
is the result’s MSB.

The architecture in Fig 3 works fine
given only four X inputs and corre-
sponding coefficients. Fig 4 shows
how to extend the architecture to
practically any number of inputs.
Groups of four inputs fit nicely into a
4-bit chunk, whose coefficients you
precompute and place in a LUT. The
scheme sums outputs from multiple
chunks in an adder tree before arriv-
ing at the scaling accumulator. While
each adder contributes to the critical
path, optional pipelining registers—
abundant in LUT-based architec-
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tures—improve performance but at
the cost of additional clock latency.

Next steps

The concepts described here can
extend to other application. Digital
filtering involves significant amounts
of multiply/accumulate operations.
Finite-impulse response (FIR) filters,
for example, accept one data input,
and intermediate values are time-de-
layed versions of the original input.
Fig 5 shows how modifying the
dataflow within the 4-bit chunk cre-
ates a structure more suitable for
building FIR filters. An initial paral-
lel-to-serial shift register captures a
new n-bit data word every n clock
cycles. The shift-register’s output  feeds
the LUT containing precomputed co-
efficients, and the same output feeds
a cascaded chain of serial-in/serial-
out shift registers. Each shift register
is part of a single tap in the filter.

Editorial Feedback
This article’s value to me was:

High—266  Average—267   Low—268

My next column demonstrates
how to build efficient high-perfor-
mance FIR filters in FPGAs using the
techniques described here. Incredible
performance levels are possible by
exploiting the FPGA’s ability to
implement parallel operations. PE&IN
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