
December 199852 PERSONAL ENGINEERING

In mathematical terms, you can ex-
press the filter function as the series

 .

When implemented on a tradi-
tional DSP, the chip multiplies each
sample by its corresponding filter co-
efficient using a single-cycle multi-
ply/accumulate instruction. Conse-
quently, it requires at least eight clock
cycles to produce the final result—
when each multiply/accumulate op-
eration executes sequentially. Using

Steven K Knapp is the founder and
president of OptiMagic Inc (Aptos, CA,
www.optimagic.com), a firm that devel-
ops intellectual property and design soft-
ware for programmable logic. Prior to
founding this firm, he held various appli-
cations, engineering and management po-
sitions at Xilinx and Intel’s former program-
mable-logic division.

FPGAs furnish fast, furious FIR filters

Multiply Accumulate

X 0

X 1

X 2

X 3

X 4

X 5

X 6

X 7

H0

H1

H2

H3

H4

H5

H6

H7

Y

EXPERT COLUMN EDA

Fig 1—An example 8-bit
8-tap FIR filter receives a

new data sample every
clock cycle, and the other

values are time-delayed
values of that sample. A
traditional DSP requires

eight clock cycles to
produce the final result.

Steve Knapp

A previous column (Ref 1) described
a fast, efficient method to implement
multipliers in a lookup-table (LUT)
based field-programmable gate array
(FGPA) when one of the inputs is a
constant value. Building on that
method, another column (Ref 2) de-
scribed a method to efficiently com-
bine numerous multiply/accumulate
operations using serial distributed
arithmetic. This column expands on
both ideas to demonstrate how paral-
lel processing in FPGAs boosts the per-
formance of digital filters to new heights.
It uses a finite-impulse response filter
for examples, but the concepts apply to
other types of digital filters.

FIR filters are a mainstay in many
DSP applications, usually providing
signal conditioning, antialiasing and
convolution. Fig 1 shows an example
8-bit, 8-tap FIR filter. It receives a data
sample X0 on every data clock cycle.
All the other values, X1-7, are time-
delayed values of X0. The filter mul-
tiplies each data sample Xn by its cor-
responding constant filter coefficient
Hn. It sums the products from all the
multipliers to produce the result Y.

a 66-MHz DSP with its 15-nsec cycle
time produces a theoretical maximum
8.33 MHz data-sample rate (15 nsec/
clock x 8 clocks/data sample = 120
nsec/data sample). This rate assumes
that all values reside within the
processor’s internal registers. The ac-
tual data rate can become slower if
the processor needs to fetch values or
place results in external memory.

Compare this performance against
an FPGA implementation where all
multiply/accumulate operations take
place in parallel (Fig 1). Each filter

Y X Hn
n

n=
=

∑
1

8

December 1998PERSONAL ENGINEERING 53

Fig 2—With the serial-distributed arithmetic (SDA) approach, the filter in
Fig 1 becomes faster because this scheme determines the result in a scaling
accumulator. This alternative cuts the number of constant-coefficient
multipliers in half.

tap multiplies the register contents
by a constant. The constant-coefficient
multiplier uses the method described
in Ref 1. The FPGA implementation
can sustain a significantly higher clock
frequency, well above 66 MHz for
most FPGAs, assuming a pipelined de-
sign. In this simple example, the FPGA
approach outperforms a traditional
DSP by a factor of eight or better.

A parallel implementation solves
most performance-critical applica-
tions. However, not all designs re-
quire such high data rates. The fully
parallel approach burns a significant
amount of FPGA resources, especially
for filters with more taps or with a
wider data word. Is there a more
space-efficient approach for lower
data rates?

Shifting to serial

Using the serial distributed arith-
metic (SDA) method described in
Ref 2, you can reimplement the de-
sign in Fig 1 with a serial scheme
(Fig 2). It captures the incoming data
sample X0 in a parallel-to-serial shift
register. Registers X1-7 serve as se-
rial-to-serial shift registers. The serial
output from X0 feeds into X1 and cas-
cades through all the data registers
until it falls out at the bottom. One bit
from each of the registers X0-3 feeds a
LUT-based multiplier containing
sums of the constants H0-3. By seri-
ally shifting data through the filter,
this method reduces the eight LUT-
based parallel multipliers down to
two SDA LUT-based multipliers.

This implementation requires 64
flip-flops (eight 8-bit registers) to cap-
ture and shift each data sample. In
some FPGA architectures, such as the
Xilinx XC4000, Spartan, and Virtex
as well as Lucent’s Orca devices, the
lookup table in each logic cell can
implement RAM as well as more tra-

ditional logic functions. Using these
devices, designers can replace the se-
rial-to-serial shift registers with RAM-
based shift registers, again reducing
resource requirements (Ref 3). Here a
16-bit shift register consumes the re-
sources of one flip-flop.

Exploiting symmetry

In certain cases it’s possible to do
even better. For instance, note that
coefficients in linear-phase FIR filters
are symmetrical around the center—
coefficient H0 equals H7, H1 equals
H6 and so on. Consequently, you can
modify the equation presented ear-
lier accordingly:

Y = H0(X0 + X7) + H1(X1 + X6) +

 H2(X2 + X5) + H3(X3 + X4)

This symmetry allows the scheme
to add symmetric taps before it mul-
tiplies them by their corresponding
coefficients, cutting the number of
constant-coefficient multipliers in
half. Data snakes its way through the
shift registers as before. However, the
outputs from two of the filter taps
feeds into a serial adder. The sum,
held in a flip-flop, feeds the LUT-
based multiplier. The output from the
multiplier feeds a scaling accumula-
tor, as in Fig 2. An extra step flushes
the final carry from the serial adder,
slowing processing time by an addi-
tional clock cycle.

EDA
EXPERT COLUMN

8

X 0

X 1

X 2

X 3

X 4

X 5

X 6

X 7

LUT
Multipler

LUT
Multipler

Coefficients
H4,H5,H6,H7

Coefficients
H0,H1,H2,H3

+

C0

+2

D Q

D Q

Se
ri
al

/P
ar

al
le

l
Sh

ift
 R

eg
is

te
r

0

0
1
1
0

LSB

11
11
11

Scaling
Accumulator

1
2

4
4

4
4

4
3

4
4

4
4

4

Y

+

C0

= optional pipelining register

Parallel-to-serial
shift register

Serial-to-serial
shift register

December 199854 PERSONAL ENGINEERING

8

X 0

X 1

X 2

X 3

X 7

X 6

X 5

X 4

Serial adder

Coefficients
H0,H1,H2,H3

LUT
Multipler Sc

al
in

g
A

cc
u

m
u

la
to

r

Carry

= optional pipelining register Sum

Fig 3—By turning the design of Fig 2 into a linear-phase filter, which has
symmetrical coefficients, the implementation becomes somewhat simpler
and requires one extra clock cycle.

Fig 4—In
evaluating the

performance of
various filter

implementations,
it becomes clear

that the FPGA
becomes more

attractive than a
DSP with an

increasing
number of taps

or faster
processing

requirements.

Making the choice

With significant performance and
cost advantages for some applica-
tions, will FPGAs end up replacing
DSPs? Not likely. DSPs will still make
up the bulk of signal-processing ap-
plications. FPGAs, however, excel at
performance-critical filtering, sup-
porting data rates significantly higher
than any existing DSP or even mul-
tiple processors.

The performance of DSPs drops
with each sequential instruction. In
the 8-tap filter example, a DSP could
theoretically process the filter algo-
rithm in eight clock cycles. A DSP’s
sustainable data rate is directly pro-
portional to the number of filter taps
as long as the device supports the
data-word width (in other words, op-
erating on a 22-bit word in a 24-bit
processor):

DSP datarate ∝ number of taps
Because an FPGA processes all taps

in parallel, its performance doesn’t
depend on the number of taps but
instead on word width. In a fully

parallel implementation, the wider
adder tree and scaling accumulator
degrades performance. With the SDA
approach, a wider word requires ad-
ditional clock cycles:
FPGA data rate (SDA, nonsymmetrical)
 ∝ word width
FPGA data rate (SDA, symmetrical)
 ∝ word width + 1

Fig 4 (Ref 4) compares the perfor-
mance of a DSP and an FPGA imple-
mentation. The horizontal axis repre-
sents the number of filter taps while
the vertical axis gives the data sample
rate, not the clock frequency. The
shaded region represents the perfor-
mance domain of a single 66-MHz
fixed-point DSP. Additional curved
lines represent the performance for
2- and 4-DSP systems. Adding mul-
tiple processors operating in parallel
increases performance on filtering al-
gorithms. However, the multiple pro-
cessors and their associated high-
speed memories add to system cost.

The non-shaded region represents
the FPGA-solution domain where
those devices’ parallelism outperforms
traditional DSPs. The horizontal lines
indicate the performance of an 8- and

EDA
EXPERT COLUMN

ART C

December 1998PERSONAL ENGINEERING 55

indicate the size of the three smallest
Xilinx Spartan devices.

For the traditional DSP user, the
task of designing an FPGA-based
implementation might seem daunt-
ing. Luckily, the vendors listed in
Table 1 either supply design software
to assist in building filters or provide
application notes. PE&IN

References

1. Knapp, S, “Constant-coefficient
multipliers save FPGA space, time,”
PE&IN, July 1998, pgs 45-48
(www.pein.com/1998/PEIN0798/
0798ecs.pdf).
2. Knapp, S, “Parallel processing in
FPGAs rivals DSP speed,” PE&IN,
Oct 1998, pgs 60-65 (www.pein.com/
1998/PEIN1098/1198ecs.pdf).
3. Alfke, P, “Efficient Shift Registers,
LFSR Counters, and Long Pseudo-
Random Sequence Generators,”
Xilinx Inc, XAPP 052, July 1996
(www.xilinx.com/xapp/xapp052.pdf).
4. Goslin, G R, “A Guide to Using
FPGAs for Application-Specific Digi-
tal Signal Processing,” Xilinx Inc
(w w w . x i l i n x . c o m / a p p n o t e s /
dspguide.pdf).

rodneV
tcudorP

ylimaF
looT noitamrofnIlanoitiddA

xniliX
0004CX
natrapS

xetriV
rotarenegEROC negeroc/erocigol/stcudorp/moc.xnilix.www

aretlA
K01XELF

0008XELF

noitcnufagemPSD
tiktnempoleved lmth.tikved_agem/agem/lmth/moc.aretla.www

tnecuL ACRO
eslupmietinifPSD
tikretlifesnopseR

lmth.psd/agpf/orcim/moc.tnecul.www

lemtA K04TA etonnoitacilppA fdp.k04psd/taborca/lemta/moc.lemta.www

Table 1—FPGA-based FIR filter design resources available from device
vendors

Fig 5—The
resources
required for
various FPGA-
based 8-bit
symmetrical
filters vary
widely by device
architecture.

16-bit FIR filter using the SDA
method. Remember that the FPGA
implementation slows with increas-
ing word width, not the number of
filter taps. The two top-most horizon-
tal lines represent the SDA method but
processing two and four bits in paral-
lel. A fully parallel implementation
could operate at the full 66 MHz but
at the expense of additional silicon.
However, a FIR filter supporting a 66-
MHz sample rate might fit into one
FPGA but the same filter implemented
using DSPs requires a separate 66-MHz
chip operating on each filter tap—plus
its associated memory.

As an example, assume that an ap-
plication requires a 32-tap filter for
8-bit data while supporting a 10-MHz
sample rate (see large dot in Fig 4).
This point falls outside the perfor-
mance range for a 66-MHz traditional
DSP and even for four DSPs operat-
ing in parallel. It’s also too fast to
work with the standard SDA ap-
proach. However, by operating on
two bits in parallel—the line labeled
2 x 8-bit DA—you can hit the required
performance level.

Increased performance does carry a
price. The higher-performance FPGA

algorithms use additional resources. Fig
5 shows the relative performance and
resources required of different 8-bit
FPGA-based symmetrical FIR filters.
The smallest and lowest performance
implementation is the SDA approach,
supporting a 7.3-MHz data rate from
a 66-MHz system clock. The next step
up in performance processes two bits
at a time and supports a 14.7-MHz
data rate. The fully parallel imple-
mentation, processing all eight bits
in parallel, supports a 66-MHz data
rate but with increased resource re-
quirements. The resources in this ex-
ample are Xilinx-style CLBs (config-
urable logic blocks). Horizontal lines
(labeled XCS05, XCS10 and XCS20)

Editorial Feedback
This article’s value to me was:

High—269 Average—270 Low—271

EDA
EXPERT COLUMN

ART D

