Session 7.7

Field Configurable System-on-Chip: Device Architecture

Danesh Tavana
(danesh@triscend.com)

Steven K. Knapp
(sknapp@triscend.com)
Agenda

- Industry Trends
- The Next Logical Step: A Configurable System-on-Chip
- Technical Challenges
 - System communication, device structure
 - Debugging
 - Maintaining hardware/software design flows
- Summary/Questions
Industry Trends

- Advanced process technologies enable cost-effective system-on-a-chip designs and multi-million-gate FPGAs
- ASIC/FPGA densities now outstrip the capabilities to easily verify a design
- Adaptability is a desirable attribute
- Integrating system logic (memory, CPU) is expensive in FPGA logic
Configurable System-on-Chip (CSoC)

- Pre-verified, configurable system integrated on a single chip
- Leverages standard logic design and processor development tools
- Leverages the design advantages of both processors and programmable logic
- Fast time-to-market for embedded systems
- System-on-a-chip for the masses
E5 Configurable System-on-Chip

- Power Control
- Clock and Crystal Oscillator Control
- Power-On Reset
- Bus Arbitrator
- 8032 "Turbo" Microcontroller
- Memory Interface Unit
- Address Mappers
- Two-channel DMA Controller
- JTAG Interface
- Configurable System Interconnect (CSI) bus
- Configurable System Logic (CSL) Matrix
- PIO Interface
- 8051/52 Compatible
CSoC Technical Challenges

- Communication between the system and programmable logic functions
 - Connecting to the data and address bus
 - Decoding/controlling bus transactions
 - Register intimacy
 - Debugging a system with both processor and programmable logic

- Maintain standard development flows
 - Leverage available compilers, debuggers
 - Leverage existing logic design tools
Two-Chip Solution: CPU+FPGA

I/Os between devices

- Many pins, even for basic 8-bit interface
- Delay in critical path
- Extra power consumption, EMI

Distributing address/data on-chip

- Uses programmable interconnect
- More critical path delay
- Variable delays in some architectures
- Bidirectional data
CSI Bus Socket
(Configurable System Interconnect)

- Distributes bus signals to embedded programmable logic
- No I/O required
- Predictable, synchronous timing
- Forward compatible with future device families
- Contention-free bussing
- Wait-state control
- DMA access
- Integrated debugging
Selector (Address Decoder)

- Fast address decoding
 - Any address range
 - Access type
 - Code
 - Data
 - Special Function Register (SFR)

- Decode delay is constant (less than 5 ns after clock)

Device	**Selectors**
TE502 | 16
TE505 | 32
TE512 | 72
TE520 | 128
TE532 | 200
- **CSL** = Configurable System Logic
- **CSI** = Configurable System Interconnect
CSL Cell Structure

- CSL cell perform various functions:
 - Logic
 - Arithmetic
 - Memory
 - Bus
 - Sequential

- Intimate connection to the CSI system bus

CSL Cell = LUT+FF
Configurable System-on-Chip Debugging Capabilities

- Access to all address mapped and other key processor resources.
- Breakpoint unit snoops the internal bus, providing complex runtime control features.
- Commands from 3rd party debuggers translated to JTAG instructions.
- All sequential and combinatorial logic nodes have complete observability.
For More Information

- [About Triscend](#)
- [Products](#)
- [Sales and Support](#)
- [Learning Center](#)
- [Contact Us](#)
- [Site Map](#)

What’s New
- Announcing the [Triscend Configurable Processor](#)
- [Visit Triscend at the Embedded Systems Conference 11/3-11/5 in San Jose](#)
Programmable I/O (PIO)

- Programmable I/O (PIO)
- Input/Output (I/O) pads for improved setup, clock-to-output performance
- Flip-flops in I/O pads for improved setup, clock-to-output performance
- Output Enable
- Output
- Registered Input
- Clock Enable
- Clock
- Drive Strength
- 4 mA or 12 mA drive
- Optional pullup resistor, pulldown resistor, or bus follower
- BusMinder™
- 3.3 V outputs, 5 V-tolerant
Comparing Logic Capacity

LUT+FF Pairs

- Triscend CSL cell = 1 LUT4+FF pair
- Xilinx CLB = 2 LUT4+FF pair
- Altera FLEX LE = 1 LUT4+FF pair
- Atmel logic cell = 1 LUT4+FF pair