Building a Working Design
Example Using the Triscend

!_/)‘Tr i S C e nd A7 Evaluation Board

February 2001 Version 1.0

Introduction

The A7 tutorial describes how to define, create, implement, and debug a working design example using
the Triscend A7 Evaluation Board. Feel free to read through this tutorial just to understand how
FastChip operates. For maximum benefit, however, actually perform each step on your own computer
and evaluation board.

Before Getting Started

Before starting this tutorial, make sure that you have the following items. Please refer to the Getting
Stared with A7 guide for information on all the items included with the Triscend A7 Starter Kit.

» FastChip 2.1.2 properly installed on your computer
» VisionCLICK properly installed on your computer

» A VisionPROBE Il JTAG download/debugging cable connected between your computer’'s parallel
port and the evaluation board

» The Diab ‘C’ compiler properly installed on your computer
» The Cygwin utilities properly copied to your computer

e A Triscend A7 Evaluation Board with the VisionPROBE Il cable and all power supplies connected.

This tutorial introduces you to the basic operations and the design flow of the Triscend FastChip
development system. Think of this tutorial as the mighty Rio Grande River; it covers a great deal of
territory but not in great depth and sometimes meanders a bit. The tutorial guides you through a
complete sample project using the Triscend A7 Configurable System on Chip (CSoC) device.

There are two parts to the tutorial. Part 1 describes how to use FastChip and provides a basic
introduction to hardware design with CSoC devices. Part 1 also covers how to debug a CSoC design
using the FastChip Device Link (FDL) utility. No software coding is required to complete Part 1.

Part 2 covers writing and compiling code for the A7’s embedded ARM7TDMI RISC processor and
debugging the software application using the visionCLICK debugger. Part 2 uses the A7 CSoC design
created in Part 1. Software developers, however, may choose to skip Part 1 and instead use the
MyDesignA7 project provided on the FastChip CD-ROM.

In PART 1 of this tutorial you will learn how to ...

* Invoke FastChip CSoC development system and create a new project.
» Locate and add soft modules from the FastChip library.

» Connect signals between the soft modules.

» Configure the A7’'s Memory Interface Unit (MIU).

e Assign I/O pins.

© 2001 by Triscend Corporation. All rights reserved. www.triscend.com

Building a Working Design Example Using the Triscend A7 Evaluation Board

Generate header and source files for the sample ‘C’ application. No actual coding is required to
complete Part 1. A compiled example application program is provided.

Bind your CSoC design to the hardware resources on the A7 CSoC device, which creates a CSL
configuration file.

Use the FastChip Device Link (FDL) software to combine the CSL configuration file with the
compiled application code, creating a CSoC device configuration image.

Download the CSoC configuration image to the Triscend A7 Evaluation Board via the visionPROBE
JTAG download/debug cable.

Use FDL to perform real-time debugging of your project.

Import a design from a third-party logic design package such as schematic capture or logic
synthesis.

Bind the final design and download to Flash.

In PART 2 of this tutorial you will learn how to ...

Add some functionality to the sample ‘C’ application program.
Use the Diab compiler to compile your program.

Use the visionCLICK source-level debugger to control and monitor your application program.

In PART 3 of this tutorial you will learn how to ...

Use the FastChip command line interface to download a new CSoC device configuration image to
the A7 Evaluation Board.

Create batch files and makefiles to automate your project

WaTriscend

Design Overview

The admittedly simple tutorial design, shown in Figure 1, introduces a number of FastChip concepts
without confusing the process with an overly complex design example. When complete, the design
operates on the Triscend A7 Evaluation Board.

Figure 2 shows the program flow for the example design. When the A7’s dedicated Watchdog Timer
times out, it generates an interrupt. The interrupt is forwarded to the ARM7TDMI processor via the
interrupt controller. The processor handles the interrupt and increments a value in a register called
RESULT. Don'’t worry, the compiled processor code is provided in Part 1 of the tutorial. Coding for the
embedded ARM7TDMI processor is saved for Part 2.

The RESULT register is actually implemented in the Configurable System Logic (CSL). The processor
communicates to the RESULT register via the dedicated Configurable System Interconnect (CSI) bus.
In the tutorial, the RESULT register is built using a soft module function called a Command Register.
Soft modules are pre-defined, pre-verified logic core or functions, which are provided free-of-charge
with FastChip.m

In order to view the contents of the RESULT register on the A7 Evaluation Board, the RESULT register
connects to a 7-segment display decoder called D1. The 7-segment display decoder is another
FastChip soft module. The four-bit output from the RESULT register is displayed as a hexadecimal
character by the 7-segment display decoder. The display decoder contains seven output pins that will
eventually connect directly to the 7-segment LED on the evaluation board.

This example focuses on FastChip features and implementing logic functions in the Configurable
System Logic (CSL) portion of the A7 Configurable System-on-Chip (CSoC) device. The Dedicated
Resources are ignored until later examples.

Dedicated Resources

< Configurable System Interconnect (CSI) Bus >

7-Segment
Display
Decoder

Command
Register

Configurable System Logic

o (-]
Figure 1. A block diagram of the A7 tutorial design.

Building a Working Design Example Using the Triscend A7 Evaluation Board

»
»

Figure 2. Tutorial Program Flow Chart

Part 1: Design with FastChip Graphical Environment

This tutorial assumes that the FastChip software, the visionClick software, and visionProbe hardware
are already installed on your computer. If not, please refer to the Getting Started with A7 guide.

Invoke FastChip

Invoke the FastChip software by double clicking the FastChip desktop icon or by choosing Start 2>
Programs - Triscend FastChip - Triscend FastChip 2.1.2.

FastChip is a Java-based application and it may take a few moments for your computer to load the
Java virtual machine. FastChip displays a welcome splash screen as it loads.

WMuTriscend.

Triscend

FastChip:

Software

WaTriscend

After the splash screen, FastChip displays a welcome dialog box describing FastChip and its
capabilities. If you wish to hide this dialog box in the future, uncheck the Show this window ... option
at the bottom of the dialog box. After reading the messages in this dialog box, click Close to continue.

ly Welcome to Fasthin | g& FastChip License I @ FastChip Copyright I

| v

Welcome to Triscend FastChip!

Welcome to the embedded chip industry's foremost integrated developrnent
environment. [Jse etther the innovatrve graphical user mterface or the
corrand line interface to achieve your development tasks. FastChip
software iz designed to work with Triscend's ES chip family and ARM-based
AT farnily of devices, allowing mcorporation of the following into one

L seamless workflow:
!_ * Design entry
& Cinulation
* Module parameterization
* Frbedded processor code development

* Desion downloading
Dichugging

Until you implernent a foll license of FastChip, the "Welcome to FastChip"
dizlog appears each titne you start FastChip. Use the three tabs on this dialog =

[Show this window at startup
| ‘@}Iutarial

Building a Working Design Example Using the Triscend A7 Evaluation Board

Unless you have already licensed your version of FastChip, an evaluation license window appears
describing the capabilities of the evaluation—or unlicensed—version of FastChip. The evaluation
version has all the same capabilities of the full, licensed version of FastChip except that it is limited to
designs containing 256 or less Configurable System Logic (CSL) cells. The tutorial design functions on
both the full and the evaluation versions. After reading the messages in this dialog box, click Close to
continue.

6 Contert | @ Onveryieny |

You currently hawve an evaluation license of Triscend FastChip, meaning the Bind function is
livaited in capacity to 256 Configurable Spster Logic fO5L) cells, but you have access to all of
the FastChip features. To obtain full Bind capacity, you need to purchase, register, and
irnplernent a full icense.

To inplement a full FastChip license wou have already purchased, click the "Ge? FassChip

Lirenss" itton below or wiew the mformation under the "Help | FastChip License | Get
% FastChip Licensze" et If you hawen't already purchased a license, please contact your
salesperson or wisit the Triscend FastChip Ordering Information page.

Need assistance?

If ou have a FastChip metallation question and you didn't find your answer online at
Triscend's Support Center, contact our FastChip Installation Support at (3600 452-1057 or by
e-mail at SupportCenterdiriscend. com. SupportCenter staff are available from 6 AN untd 6
PI, WMonday through Friday, Pacific time.

? el I (%get FastChip License...
"

By default, FastChip opens the last used FastChip project when you start. Before starting a new
project, close the existing project by clicking File - Close Project.

You can change the start-up behavior of FastChip by selecting Tools - FastChip Options change the
Default Project Opening settings in the Miscellaneous Setting panel.

File Constraints Tools Wiew Help
@ MWew: Project. .. Ctrl+H
@ Cpen Project... Ctrl+0
@ Cloze Project

g Save Project Cirl+5
ﬁ Save Project A=

W Delete Project...

1 D yDesignATIMyDesignAT fop G+
2 DA nyDesignESiMyDesignES fop cir+2
3 DA ATickiTick.fop Ctrl+3

<l Exit From FastChip Fd

WaTriscend

Start a New Project

You can create FastChip projects in any existing directory on your machine. By default, FastChip uses
<Fast Chip Install directory>\Projects directory, which is the recommended location.
Using the default installation settings, the project directory will be in the following location.

<drive>:\Program Fil es\ Tri scend\ Fast Chi p\ Proj ects

Three example projects are installed in this directory. One of the examples, MyDesignA7, is similar to
the tutorial project you are going to create. The design you are about to create will use the compiled
application program from the MyDesignA7 project.

To create a new project, select File > New Project from the menu bar.
File Constraintz Toolz Miew Help

@ Mew: Project. . Ctrl+H
by

@ Cpen Project... Ctri+0
@ Erse Broject
@ EwE Hraent GGl

B SoveProject ts

3% DElte Frojent.,

1 D yDesignATIWMYDESIONAT Top Ctri+d
2 D MyDesionESWyDesignES fop i+
3 DA ATk Tick.fop Ctrl+3

=l Exit From FastChip Fa

Enter “MyFirstA7” as the design name in the Project Name field. The project will be created in the
default location unless you change the file settings under Project Location. Create this project in the
default location.

FastChip Project
Project Mame

[yFirsta7
Project Location
||:'I.F'ROGRAM FILES'TTRISCEMDIFASTCHIParojectsibyFirstATibyFirstal fop @Qrawse |

Building a Working Design Example Using the Triscend A7 Evaluation Board

The default device selected by FastChip is the TE520S40-40Q. For this tutorial, select the TA7S20-
ESQ from the Available Target Devices menu. First, click the 32-bit folder to expand the tree below.
Likewise, click A7 to reveal the devices available in the A7 product family. Select A7S20 - 208-pin
PQFP - ES to choose the TA7S20-ESQ device available on the A7 Evaluation Board.

€85 Current Target Device: TA7S20-ESQ |

Available Target Devices 1 i Device Description |

=== | |
%I E502 = <[> Available Resources ‘
[AES) ESOS ¥ Dedicated Resources
HL B2 : _ :
E@ Es20 @ Device Cveryiew
Iy 208-pin PEFP | Class: 32bit
| L@ 25 MHz (Part: TES20540-250) | |G| Family: AT
| L@ 40 MHz (Part: TES20540-4001 ||| Device: A7S20
_i 454-pin BEA Package Type: PO208
5y 32-bit || Speed Grade: ES MHz
Iy A7 :
iy A7520
] 128-pin LGFP
1%y 208-pin PFP
. ®ES (Part TRTS20-ESQ)|
(] 4G4-pin BEAE

Kl o

The tabs on the right side of the dialog box show various characteristics of the selected device. Click
the Available Resources tab to display the design resources inside an A7S20. The A7S20 has 2,048
Configurable System Logic (CSL) cells, 128 address Selectors, up to 154 user-defined Programmable
Input/Ouput (PIO) pins, and six global buffers (GBUFs). Click OK to continue.

FastChip Main Window
After creating a new project and selecting the target device, FastChip displays the main window.

The figure above shows how FastChip should appear on your screen by default. If it does not appear
like this figure, select View - CSoC.

The FastChip main window contains the following areas:
Menu Bar: Displays the various commands supported by FastChip
Toolbar: Contains shortcut icons for the most commonly used tools to build your project

Dedicated Resources: Contains icons representing the dedicated resources on the A7 CSoC,
including the various peripherals. These functions are always present in a FastChip project. Click on
an icon for a short summary of the features available within each peripheral.

Module Library: Lists the Triscend soft modules function provided with FastChip, as well as any
modules you created by importing logic designs from schematic capture or logic synthesis.

CSL Window: Contains the modules you selected and configured. These modules will be
implemented using the Configurable System Logic (CSL) resources on the CSoC.

Resource Estimate: Displays the estimated resource requirements for the modules instantiated in
CSL window. The actual number of resources required is determined by executing Bind and detailed in
the project report.

Command Output: Shows FastChip's response to commands entered using the graphical interface.

Status Bar: Shows the status of the current operation in progress, if any.

MuTriscend

Menu Bar
File Constraints Tools View HE|E _ ﬂ Trizcend
| == et gD e e ey =
; o
Faroee & A e Tooba
Imppart Export Generate Bind (not currerd) Device Link _ Project Motes
@ ES
e e oy (s ==
M onn EZ pedicated Resources
rACL Clocks MZSI Timer_0 Timer_1 LART L Poweer Scratchp... Cache
-
& Configurable System Lugil (CSL) =10] %]
gﬁ Module Library @ |
QFindI =Find target= |3
’@ Module Library
[| Displays .
F 1L Anic Moduies CSL WIndow
4
Module
Library
;] Deprecated
——— H
Ot Ce ol Resource Estimate =
Irﬂ'[[C5L Cells: l].l'2l]48| 0x 10 Fins: l].l'93| 0x oL C5l Selectors: l]J'128|_ . 4
o
= =10]
@ Loading imported neflist 0o\ ImportedFortdyDesign AT heartbeat n -
@ Closing project 0o, WyDesign A7 MyDesign &7 fop Command Output
Pl s e 4 -
@ Opening project D WyFirstA Ty First A7 fop a
Status Bar
W Creating Project: MyFirsta?.......... A\ 4 1

Selecting and Configuring Soft Modules

This design example uses two soft modules, selected directly from the Triscend soft module library.
Command Register

A command register is a read/write register connected to the Configurable System Interconnect (CSI)
bus. It is memory mapped, such that the processor and other bus masters can write to it or read from it.
It is found in the Module Library tree under Peripherals > Control.

Alternatively, type “Comm” in the Module library text box, which highlights the Command Register
module.

Ji.F Module Library (2]
AFind IComm »

iy Logic Modules -
H] Arithmetic

H_ | Miscellaneous

H] Courters

H | Registers

A | FIFCs =
Fy Peripherals

AL) Serial 100

EI@ Contral

:-@ Command Register v.2|j
4 L3

Building a Working Design Example Using the Triscend A7 Evaluation Board

This example project uses a command register to control the 7-segment LED driver, which in turn
connects to the 7-segment LED on the A7 evaluation board. Double-click the Command Register
module or optionally, drag and drop it into the CSL window. If you drag and drop the module, click the
associated icon in the CSL window. This action opens the Command Register edit dialog box.

Cormponent Marme ||CdeEg_A | Componert Wicth IB;}

iCDnnectiu:uns | E Pr.:.pertiesl
W

v o« ‘ Hooce | P HEIp-

To view more information on how the Command Register module operates, click the Help button at the
bottom of the dialog box. Doing so invokes the context-sensitive online help.

S E

Hide Back Fopwerd Options

Contents Indss | Search I

Type in the kewword to find:

Command Register module

& Command Register is a read;’w%:e reqister connected to
e Configurable System Interconne us. Itis

I the Configurable System Int ot (CSI) bus. It

primarily used to control functions built in the Configurable

16-deep ROM module i |

35tate Dutput System Logic (CSL) matrix,

7-Segment Driver module Connections i
3-bit P4/ module

gggg E::':I':‘F'th maodule & Commmand Register is clocked by the Bus Clock signal.

AT Address: Constraints File

AF Address Space Planning Port Name | Direction Description

Ahaout thiz Help System
About Trigcend Corparation

fbout Triseend FastChip Dialag Async Input Asynchronous preload. Optional,

Accumulator module Loads the register Q with the

Add 140 buttan Async, Preload value when

Add Module asserted High.

Adder, Loadable module

Adding & Library madule to your proje 0 Cutput [Data output fram command

igg'{ggsngt;i:?ai}'nﬁgr project register. Any h_us master reads ar

Address Selectar madule wirites this reqgister over thEg CSI

Adohe Acrobat Readar 2,00 Ll hus at the specified Symbolic
&ddress.,

Dizpla
_—HI Command Register Width

WaTriscend

Rename the module by typing “RESULT” in the Component Name text box. Then rename the output
signal bus connection for port Q to a new name by typing “RESULT" in the connection box to the right
of the Q output port.

Campanent Mame ||REBULT | Companent Width IE!%
iCDnnedianS | Proper‘tiesl
r

’ Ok ‘ x Cancel

The beauty of programmable logic is that your application uses only the amount of logic required to
implement your design. The tutorial design only requires a 4-bit register to hold the hexadecimal
character displayed on the LED. Consequently, tailor the Command Register to use only four bits.
Click the Component Width spinner buttons or enter a text value, ultimately setting the value to ‘4.
Note that FastChip automatically completes the name of the Q output to RESULT[3:0].

Component Name ||RE5ULT | Component Wicth |4 ?L
! Connections Properies |

? el
n

r [RESULTEE:0] Q
He
r

/ Ok ‘ x Cancel

Click the Properties tab. Here, you can enter the symbolic address for the Command Register
address. You can also define the physical address for the command register. However, FastChip is
designed to support design re-use and easy integration. Consequently, FastChip can automatically

P tep
n

1"

Building a Working Design Example Using the Triscend A7 Evaluation Board

assign addresses for your application and pass the address assignments to your favorite ARM7TDMI
compiler. By assigning just a symbolic name, you let FastChip handle the mundane details of creating
a memory map for your application.

Enter “RESULT” in the Symbolic Address text box. Later in the tutorial, we will have FastChip
generate a header file for the ‘C’ compiler. The Generate function allocates this symbol to an unused
address location. Your source code can include the generated header and refer to this command
register by its symbolic name, RESULT.

Cormponent Marme ||RESULT | Componert Wicth ij
i Cannections Properties |

Symholic Address |’Address definition

WREEULT T | {* Allow Fastchip to allocate the address
~Advanced Options " Define an Address ...

[z Wirite-Cinly

E_b [Include Placement ...

Preload Yalues
Initial % alie

“= o H§x|

Azync, Preload

T o Heg|

“QK ‘ xgancel ? Help

WaTriscend

Click OK to complete configuration of the RESULT Command Register. FastChip creates a custom-
made module called RESULT in the CSL window, based on your settings. Note that the Resource

Estimate area shows that the design, so far, uses just four out of 2,048 available CSL cells and one of
the 128 CSI bus address selectors.

Fie Constraintz Toolz Wiew Help n_b" Trizcend
= = iy == =
P b : o
HHER @ B S
Import Export Generate Bind (not current) Dewice Link Praoject Motes

@
M nn @ 7§ 1§ =B = v

hCL Clocks MSSIL Timer_0 Timer_1 LART 0 LIART 1 Iz

Pavver

Cibd 2,

Watchdog

Configurable am Interconnact

& Configurable System Logic (CSL) =10/x
- q

Module Library [2)) EF)

CAFind ICDmm » | RESULT

Logic Modules 0

0| Arithmetic
0 | Miscellaneous
0| Courters
0| Registers :
| FIFOs lilE
iy Peripherals !
01 Serial 110
]@ Cantral

~@ Eommand Register w.2|~
. [+

’—Pre-hind Resource Estimate

ﬂ'ﬂ CEL Cells: 4."2I]43I 1% 2 Fins: I]I!33| 0x L+ CSl Selectors: 1I128I 1% > GBUFs: 0/6] 0x

& =0jx
@ Created project MyFirstt s j
@ Opening project Do by Firsta T WyFirstA7 fop

@ Loading project netlist Do Wy FirstA7WyFirstA7 n |
@ Crested module RESULT 7]

| ——————

7-Segment Display Driver

This project requires a 7-segment display driver to show the value of the RESULT register using the 7-
segment LED on the A7 Evaluation Board. To locate the 7-Segment Driver, type “7” in the Module
Library text box. FastChip finds and highlights the 7-Segment Driver module.

& Module Library @
CaFind IT T »

- 7-Segment Driver =
@ LCD Char Driver

-0 AVEA Graphic Contraller

Fy Logic Modules

F) Arithmetic

H | Miscellaneaus =
H | Cournters

H_ | Registers

i | FIFOs

Fa Peripherals lj
. | »

13

Building a Working Design Example Using the Triscend A7 Evaluation Board

Just to demonstrate some of the other FastChip capabilities, click the list icon next the to the text box.

ﬁg_Mudule I:ihrar_l,r E_
"5 IT— 3

This action displays the module library, but this time as an alphabetical list instead of a hierarchical
tree. Click the hierarchy icon to switch back to the tree view.

ﬂ%ﬁg Module Library @
GAF dl “Find target= |

16-deep ROM

J-state Cutput v 2
7-Seqmernt Driver

S-hit PuMng

Accumulatar

Adder, Loadakle

Address Selector
Asynchronous Receive FIFO

Baud Rate Generator -
K1 | _>IJ

Double-click the 7-Segment Driver in the Module Library. Rename the Component Name to D1.

-

Component Mame ||D1 |

iCDnnectiu:uns | E‘ Pmperﬁesl

I %]—f-—

o

/g{ ‘ xgancel I ? Help ‘

The input to the 7-segment module is a four-bit value. The 7-segment module converts this four-bit
digital value into the appropriate hexadecimal display on the 7-segment LED. In this design, connect
the output of the RESULT register to the Hex port. There are a few ways to complete the connection.
The most obvious is simply to type the name “RESULT[3:0]” in the Hex input port text box. However,
you may not always remember the name of the desired connection.

Another approach is to use FastChip’s connection browser. From within the 7-segment driver dialog
box, click the magnifying glass icon next to the Hex input port text box. There are two views of the
connections within the design; the Hierarchical View shows all connections as a tree while the Flat
View shows the connections alphabetically.

WaTriscend

To see the signals connected to the RESULT register, click the RESULT folder icon. Then choose the
Q port, revealing the signals connected to the output port. The signals are listed as a four-bit bit bus
called RESULT[3:0] and as individual signals RESULT[3] through RESULT[0]. You could either select
RESULT[3:0] or hold down the shift key and select the four individual nets.

e
(o Hierarchical Yiew (Instance View)
£ Flat “iewr ..

Available Hets

Q,ﬁ_nd] “Find target= |

%4y hodule Instances

B MCU

] Clocks

Iy RESULT
HEya

@ ?
1o fh} @ RES e

- ® RESULT[Z]
@ RESULTI1]
@ RESULT[O]

Selected netrs) ||RESULT[3:EI]

Dts are added in the order they appear Rere.

/ 8] xgancel ? Help

15

Building a Working Design Example Using the Triscend A7 Evaluation Board

Now choose the Flat View option. Because this input port expects a multi-bit value, FastChip only
displays multi-bit nets by default. Play around a bit by clicking on the Show single-bit nets option and
the Port connections option. Also, try the Find function. Finally, select the bus called RESULT[3:0]
and click OK when finished.

iy
" Hierarchical Wigw (Instance i)
¥ Flat View
[Showy single-bit nets [Show multi-bit nets [|Port connections
Available Hets
GFind I =Finid target= | »
Het Hame Drives/Driven By

RESLLT[3:0] h (Driven By: RESULT.GH

10 f;}

Selected netrs) ||RESULT[3:EI]

Dts are added in the order they appear Rere.
/ 8] xgancel ‘? Help

Click OK to return to the CSL window, and notice that D1 has been added to the CSL window and that
seven |/O pins are now used.

MuTriscend

Various FastChip Features

Let the cursor linger over the D1 module icon. FastChip displays a pop-up tool tip that shows how the
D1 module is configured and connected. This allows you to quickly review the properties of a module
without clicking on it. Also, note the small black arrow to the right of the RESULT module. This
indicates that RESULT drives a signal into D1. This information is also shown in the tool tip. Under the
Connections sub-heading, note that the Hex port connects to a bus called “RESULT[3:0] (Driven by
RESULT.Q)”, meaning that the ‘Q’ output port of the module named “RESULT” drives a bus called

“RESULT[3:07".

RESLLT

2

Bl

3”1 (F-Segrment Drvan
Dzl vs 2 midble-wide Fex valve o 3 F-eegaert dizolay.

Conmeciogs

® Hex= RESULT=:0] (Driven by: RESULT.Q)

Progedfies

® Output Drive Strength = STRONG
® Output Functionality during ... = trus
® 7-Segment Options = true

T H

To demonstrate a few other FastChip capabilities, click your right mouse button while the cursor is over
the D1 module to reveal the module menu. Select Duplicate Module Instance.

=
o
[rl

(= Edit Module Instance...

M Delete Module Instance

%ﬁ Duplicate Module Instance
&q Export Module Instance. .

This duplicates the D1 module under a new component name 7seg_A, including all module settings
and connections. If you were to use this module, you probably want to edit it and modify some of the

connections.

0 260

Taeqg A

{Lw]

17

Building a Working Design Example Using the Triscend A7 Evaluation Board

The tutorial does not require this new component. To delete the module, place the cursor over the
7seg_A module and click the right mouse button to reveal the module menu. This time, however,
select Delete Module Instance. FastChip then displays a confirmation dialog box asking if you really
want to delete it. Click Yes. Once deleted, there is no undo command in FastChip.

=

Tsegf [= Edit Module Instance...

M Delete Module Instance

%ﬁ Duplicate Module Instance

;ﬂﬁ Expart Module Instance...

At this point, the tutorial design has just two modules, resulting in a fairly sparse and straightforward
CSL window display. However, a design with many modules can become confusing. FastChip allows
you to reorder the modules in the display window so that you can group associated functions together.
To relocate a module, follow the steps shown below.

Click and hold the left Drag and drop the
mouse button over module to the desired Release the mouse
the module. location. button.

B- B 2
RESLLT 1T [%

2 = g

D1 % RESLLT

At this point, the custom logic design for this simple design example is complete. Select File > Save
Project to save your design to disk.

Assign I/O Locations, Configuring the Memory Interface Unit

For most designs, it is best to let FastChip make the first /0O assignment. That way, FastChip can
optimize the I/O assignment according to the CSL logic design. However, not all designs have this
luxury. For example, the tutorial design example operates on the Triscend A7 Evaluation Board, which
already has a pre-defined pin assignment.

In order for the example design to correctly light up the LEDs on the evaluation board correctly, the
output pads must be assigned to specific package pins. The FastChip I/0O Editor provides an intuitive,
graphical interface to assign 1/O pads to specific package pins. Choose Constraints - 1/O Editor
from the menu.

Constraints Tools Wiew Help

8] Ejgzr... Ctrl+E

Edit Atidress Constraints... Ctri+A

@ Edit Timing Constrairts. Ctrl+H

@ Change Target Device. .. Ctrl+H

WaTriscend

FastChip displays the I/O Editor window. All unassigned I/O pads are displayed in the “Available 1/0
Pads” area on the left. The display on the right shows a graphical view of the selected package, with
all pins numbered, labeled, and color-coded. The legend in the lower left-hand shows the meaning of
the color-coding. Black pins are dedicated functions like JTAG, clocks, etc. Ground connections are
green; power connections are red.

Ny ¥ ik & o

Usze Bind Electrical Settings Al Clear Al Full Screen

Available /0 Pads

QFindI =Find target= |2

2y Awsilable 10 Pads
D1

LY

iBE=vcc

= Ground

= Prohibited

= Hon-Editable

= Used

&| = Available

= Input Signal

= Output Signal

= Tri-state Output

= Bi-directional Signal

40 =CRER

/QK I xgancel J ? Help I

Defining the Memory Interface Settings

The Triscend A7 CSoC has a Memory Interface Unit (MIU) that supports both static and dynamic
memories. The static memory interface typically connects to an external Flash device containing the
personality for the CSL programmable logic resources portion of the CSoC device and the compiled
binary code for your design. However, the static memory interface optionally connects to other types of
static memory such as SRAM or ROM. The static memory interface supports up to 16M-bytes of
external memory in x8, x16, or x32 configurations.

The optional dynamic memory interface connects to one or two banks of external SDRAM. The MIU
supports up to 256M-bytes of SDRAM in x8, x16, or x32 configurations.

19

Building a Working Design Example Using the Triscend A7 Evaluation Board

The MIU settings reserve the required pins in the I/O Editor. If a MIU pin is not required for your
application, the pin is released back to your design as a Programmable Input/Output (PIO) pin. Start
by defining the static memory settings for this example application. The A7 Evaluation Board has a

512Kx8 Flash memory installed in the F

lash socket label U11. Accordingly, select 512Kx8 from the

dialog box. This action reserves the required I/O pins in the 1/0O Editor. When finished, click the

SDRAM Memory tab.

Qﬁndl =Find target= |2

Static Metmary | SORAM Memory |
Static Memory ! Flash Subsystem connected to the MIU

Depth x Width (in bits) Required System Pins (including non-recoverable pins)
Horne W[19:0], DQfr:0], CEM[O], WEM, OEM -
2AEK%E [19:0], Da[7:0], CEM[O], WEM, OEM
W 256K%T R [19:0], D[15:0], CEM[T:0], YWEM, OEM
1[19:0], D[31:0], CEM[3:0], YWEM, OEM

512kx32
1
11 B
132

A[19:0], DA[F:0], SENO], WEN, OEMN
a1 9:0], D[5:0], CER[0], WEM, OER
41 9:0], Da[31:0], GEN30], WEM, OER
41 9:0), DE[7:0), CEM[O], WEN, QER

41 9:0), D[5:0], GER[0], WWEM, OER

T hA D

1 9:0], DiA[31:0], CEM[3:0], WEM, OER B

ATI0-m Dol T-m SR MWYERE iER]

/QK ‘ xgancel I ? Help I

Though supplied on the A7 Evaluation Board, this example design does not use SDRAM.
Consequently, select 0 as the Number of external banks and None for the memory size. Click OK

when finished.

Static Memary SDRAM MERDW |

Mumber of external banks: & E 1 2 “

SDRAM Subsystemn connected to the MIU

Q,Fi_ndl <Fimd target= |2

Depth x Width (in bits)

Required System Pins (including non-recoverable pins)
Al19:0], DQ[7:0], WEN, 5D DCKE, SDCE[1:0]
Al20:0), Dalr0], WEN, SDCLK, SDCKE, SDCE[1:0]
Al20:0], DA[7:0], WERM, SDCLK, SDCKE, SDCE[1:0]
Al20:0], DA[F:0], WERM, SDCLK, SDCKE, SDCE[1:0]
Al20:0], D[F:0], WEM, SDiCLK, SDCKE, SDCE[1:0]
Al20:0], DA[F:0], WEM, SDCLK, SDCKE, SDCE[1:0]
Al20:0], Dalf:0], WEN, SDCLE, SDCKE, SDCE[1:0]
Al20:0], Dalr.0], WEN, SDCLK, SDCKE, SDCE[1:0]

/ Ok ‘ x Cancel

9 tebo
"

20

WaTriscend

Assigning /O Locations

Now that the MIU pins have been reserved, start assigning the 7-segment LED driver outputs to the
appropriate device pins. To assign a pad to a package pin, first expand the Available I/O Pads tree

and find the desired 1/O.

iy Povailable 110 Packs
Sy o
Iy Output Signals

® D1 SE5B
@ D1 SEGC
@ D1 SEGD
--® D1 SEGE
@ D1 SEGF
L@ O SEGG

Then, click and hold the left mouse button to drag the 1/O pad to the desired pin location.

E] 51 %2 %5 54 5.
= =

[[

Once over the desired location, release the left mouse button to drop the pad. Note that the assigned
pin disappears from the Available I/O Pads tree.

If you make an error, you can move the pad by dragging and dropping it onto another pin. Likewise,
you can drag an assigned pin back into the Available I/O Pads area. Assign all pads to their

respective package pins according to the following table.

Module Pad Name Pin Number
D1.SEGA 89
D1.SEGB 90
D1.SEGC 95
D1 D1.SEGD 96
D1.SEGE 100
D1.SEGF 101
D1.SEGG 102

21

Building a Working Design Example Using the Triscend A7 Evaluation Board

When finished, your assignments should appear as shown below. Note that the Available 1/0 Pads
area should be empty.

EGC
SEGD
EGE

|
1o |
=]

Click OK after you finished assigning pads. The I/O assignments are stored in a file called
<pr oj ect _nane>. i oc, located in the project directory. You may also edit the contents of this file
using your favorite text editor.

Generate a Header File for Your Compiler

Earlier in the design example, the Command Register was given the symbolic address RESULT. In
order to pass the symbol and address of this register to your compiler, FastChip generates a ‘C’-
language header file with declarations for the addressable registers in the configurable logic.

FastChip does not generate initialization code for the A7’s dedicated resources. Instead, the device
drivers are provided in source form for easy integration.

Click the Generate button to invoke the Generate Code dialog box.

&

Generate

Save the generated file in the default location. You can also choose the target directory where the
generated files will be stored. These files will not actually be used during this part of the tutorial. If the
View Generated Project Header Files ... option is checked, FastChip displays the contents of header
files using the selected text editor (usually Windows Notepad). Click OK when finished.

Generated Code Target Directory
{Directnry Pararn FilesiTriscendiFASTCHIFProjectsWiyFirstaT! X Browse |

E [¥ View Generated Project Header File (using the external text editor.)

/ %.L x Cancel

While creating the design, FastChip will issue a few warnings. These warnings are caused by some of
the unconnected sideband signals. These sideband signals connect to the various dedicated
resources on the A7 CSoC device like the embedded UARTS, processor, etc. In the tutorial design, the
dedicated resources do not connect to the outside world and consequently, these particular warnings
can be ignored.

9 e
n

22

WaTriscend

You can also tell FastChip not to display these warnings in the future, if you desire. Click the green
plus sign to the far right of Options.

WARMNMNG: generate: Met IRGQ2 has no source.
4 WARRING: generate: Met CTS has no source.
WARMING. generate: Met DER has no source.
& WARNNG: generate: Met DCD has no source.

VWARRING, generate; Met Rl has no source.
= Allocating address ...

= Crested header file Do WyFirsta T byFirstAT b -

Command Comploted Successfully
|—Optinns %L\&

s

Clicking the plus sign expands the Options pane, exposing the available options beneath. The warning
messages only appears if the Show Warnings option is checked. By default, FastChip displays all
messages, asking you to confirm by clicking OK. You can also have FastChip skip the confirmation
step, if there are no errors, by checking the Close this dialog box ... option. Click the blue minus sign
to minimize the options pane.

WARNING: generate: Met IRQZ has no source,
+ WARNING: generate: Met CTS has no source.
WARNING. generate: Met DER has no source.
+ WARNING: generate: Met DCD has no source. J

WARNIMNG: generate: Met Rl has no source.
= Allocating address... -
Command Completed Successfuliy
’rOptinns —%

[Show Warnings [Cloze this dislog box when command completes, if na errors

@ | Peoel| e
As a convenience, the Save button saves the contents of this dialog box as an HTML file that you can

send to the Triscend SupportCenter should you run into a problem. This does not save your header file
in HTML format.

Click Close to generate the header file for this example design. Unless you specified another name,
FastChip will save a copy at MyFi r st A7. h.

If the View Generated Project Header Files ... option was checked earlier, FastChip will invoke your
default text editor and display the contents of the header file. Scroll down until you find the section
marked “BEGIN SOFT MODULE REGISTER DEFINITION”. Once there, the header shows that the
RESULT register is assigned to address 0x1000ffffc.

[* ========== BEGQ N SOFT MODULE REG STER DEFI NI TI ON ======= */

/* = You can use the follow ng register definition = */
/* = with the access macros defined above. You can = */
/* = also type cast the register definition yourself = */
[* = eg. to access a 4 bytes register ' MyReg' = */
[* = as unsigned int -> TWORD(MyReg) =102; = */
[* = as string -> sprintf((char *) MWReg, "abc"); = */
/* */

#def i ne RESULT O0x100ffffc /* size = 4 bytes */

[* ========== END SOFT MODULE REGQ STER DEFI NI TI ON ======= */

23

Building a Working Design Example Using the Triscend A7 Evaluation Board

The FastChip tutorial example does not actually use this header file. However, it will be used in later
design examples.

Bind the Project

In a process called Bind, FastChip compiles the design shown in the CSL window into to CSL logic
within the CSoC device. This process is analogous to the compile-link-load process when compiling a
software program or the map-place-route process for creating a gate array or FPGA.

Bind is a computational-intensive process, much more so than a simple compiler for a processor.
Many complex computing algorithms optimize your design to fit it into the CSL logic. The Bind process
for this simple project may take five to ten minutes on computers that only meet the minimum system
requirement. The status bar on the wait dialog box shows you how Bind is progressing.

The ultimate result from Bind is an initialization file called <pr oj ect nane>. csl . This file is later
combined with your software application image to download to the CSoC.

FastChip indicates the current Bind status for the project. If Bind must be executed before completing
the project, the Bind icon indicates, “Bind (not current)”. If the Bind step has already been completed,
the icon indicates just “Bind”. To process the tutorial design, click the Bind icon.

T,
b

x
Bind (not currert]

Because Bind is compute-intensive, FastChip provides various Effort Levels allowing you to trade off
compute runtime versus Bind quality of results. The Maximum setting provides the best overall results
but at significantly longer run times. There is also a timing-driven mode where you can specify the
timing requirements for your design. Bind then attempts to compile the design and meet your
requirements. Again, this adds to the overall run time.

For this design, accept the default Bind effort level, Minimum, for minimum bind effort and click OK.

Effort Level
{* Minimum: Moderate Results, Fastest Bind Time

Chiedium: Medium Resultz, Medium Bind Time
 Maximum: Best Resutts, Slow Bind Time

Timing Ciriven Bind
['Use Timing Crriven Bind . .

X,

As Bind progresses, you will see various messages in the output dialog box.

If you have not already licensed FastChip, you will see a message describing that you are currently

running Bind in Evaluation mode. The message also describes the limitation of the evaluation mode
and how to obtain a FastChip license. This tutorial design functions with either the full or evaluation
modes.

Bind then performs a design-rule check (DRC) to find any potential problems. For this design example,
Bind reports that the sideband signals, like IRQO, IRQ1, etc., are not connected. These specific
warnings may be ignored, as this example does not use any of the sideband signals.

24

WaTriscend

Bind then performs automatic address allocation; similar to that when you generated the header file for
your ‘C’ compiler. This step finds all of the addressable items in your CSL design—essentially anything
using one of the CSoC’s address selectors. Bind then assigns a physical address to every selector
based on the design requirements such as address size and any relative address assignments
specifying the address relationship between two or more selectors.

The mapping step decomposes your CSL logic design and then compacts the logic into the resources
inside the CSL cells, the selectors, and the CSI bus resources.

The placement step determines the best location for each used CSL, selector, and bus resource out of
the available resources on the selected target CSoC device. This is analogous to the placement step
of a printed circuit board place-and-route package.

The routing connections step decides how best to interconnect the CSL, selector, and bus resources
given their current placement on the targeted CSoC device.

After completing the mapping, placement, and routing steps, FastChip performs a static timing analysis
of all of the logic paths within the device. These paths are described in detail when you generate a
project report.

Bitstream generation creates the binary programming file for the compiled CSL design. This file, called
<project name>.csl, is used later to physically program the target CSoC device.

Finally, Bind reports that it successfully completed your design.

VWARNING: bind: Met IR0 has no source. -
WARRKNIMNG: bind: Met IRG1 has no source.
#VWARNING: bind: Met IR22 has no source.
WARRKIMNG: bind: Met CT= has no source.
WARNMNG: bind: Met DSR has no source.
WARRKNIMNG: bind: Met DCD has no source.
WARNIMNG: bind: Met Rl has no source.

= Do autamatic address allocation. ...
'?é'ff%‘ e Do mappin...

= Do placement..
e Do routing...
= Do timing analysis...
= Do hit stream generation... =

= Bind command succeeds. -
Command Comploted Syccessfally
|—Op1inns - |

glusei‘“ éSa_ve ‘

Again, the Save button saves the Bind output, primarily for customer support or to review any errors or
warnings reported by Bind.

Click Close when finished. The Bind result is saved in the <pr oj ect _name>. csl file.
Select File > Save Project to save the current state of the project.

Note that the Bind button no longer indicates “(not current)”. Also note that FastChip updates the
resource estimates area with the exact resources as determined by Bind. Before running Bind.
FastChip quickly estimates CSL usage based on assumptions about the design. After running Bind,
FastChip knows exactly the CSL resources required. Usually, only the CSL cell count will change.

Before Bind ... After Bind ...
Pre-bind Resource Estimate — Post-bind Resource Utilization
|Vﬂﬂ 5L Cells: ?J‘EI]AIBI 1% |Vﬂ'ﬂ 5L Cells: 111‘2043' 1%

25

Building a Working Design Example Using the Triscend A7 Evaluation Board

View the Project Report

To investigate what Bind has done for your project, select Generate Project Report from the Tools
menu to display the project report dialog box.

Toolz “iew Help

Eﬁ: Import Module From File... Cirl+T
AQ Import Module Instance From Projgct... Cirl+F
@ Export Project... Ctrl+F
Qﬁ Export hodule. .. Cirl+hd
@ Generate Codle... Cirl+GE
| B Design Rule Check (DRC)... Cirl+C
8, Bind... Cirl+E
‘ FastChip Device Link Lility... Ctrl+0
. @ Generate Project Rep;\ort... Cirl+R
, {3} Wigsy Project Prnper‘t%gs...
. W # Fastchip Options ..

When you click OK, FastChip creates the project report.

&

File ||D:1Prngram FilesiTriscendiFASTCHIPIP rojects\MyF irstATIMyFirstaT htrm| | L Browse |

’—Prnject Repart File (HTML Farmat)

[¥iew Generated Report fusing the default browser)

4/@ xgancell P e I

Click Close to invoke your default HTML browser to display the report file.
[FERDI =0 FESOUFCE TIMZSTT .. -

Report =oft modules ..
Feport 12

Feport module connections ...
Report address allocation ...
Report hind results ...

Report timing analysis .. |
= Browese file Do yFirstA Ty First 27 Hhm to viesws report details. -

Command Comploted Succoessfuiiy

|—0ptinns L |

@ﬁﬂp -ESEI_VE

&

26

MuTriscend

Browse through the report to look at the result of binding the project. When you are finished, leave the
browser window opened. This report will be used later when debugging the project.

=

w?é@%:\aﬁé.dli

Blat: Fonward Reload Haome Search Metscape Prirt Security

" Bookmarks A Location: [CTSMYFIRS™1/MYFIRS2HTM =] €511 What's Related

e

Project Report

Report for project MyFirstAT

Current time 15 Janmary 15, 2001 8:51:55 AM PST

Produced by Triscend FastClhapT™ Configurable Sy stem-on-Chip Development System,
Version 2.1.2 Build 010108-1553

* DProject Surimaty

* Project History

* C3SL Eesource Tilization
o Soft Modules

* Programmable IO Pins

* Inter-Module Connections
* Address Allocation

* Bind Eesults

¢ Timing Analysis
@|={D= | |Document: Done

Setup the A7 Evaluation Board

Before attempting to download the design, be sure to perform the following steps. These key items
must be completed before you can reliably communication with the A7 Evaluation Board.

Configure the parallel port for visionPROBE Il
Apply power to the visionPROBE Il cable
Plug the visionPROBE Il cable into the board
Apply power to the board and switch it on

Apply reset to the board by pressing the reset button

Configure the parallel port for visionPROBE I

For a detailed description of how to configure the parallel port and connect the visionPROBE Il cable to
the board, refer to the pamphlet by WindRiver called visionPROBE Il Hardware Installation Guide.
There are three very important considerations for configuring the visionPROBE Il cable.

1. The parallel printer port on your computer must support and be configured as an Extended
Capabilities Port (ECP). On some computers, this is accomplished as a Bios setting. Other
computers can be configured via the operating system.

2. Make sure that the allocated 1/0 address and interrupt request (IRQ) settings in the file
<install directory>:\ESTII\condl|.cfg match those for your parallel printer port.

3. There is a utility to test your visionPROBE cable and configuration called VPTest . exe,
located in the <i nstal | directory>:\ESTII\ directory.

Additional details on the A7 evaluation board are available in the \ Docs subdirectory of the FastChip
installation directory in an Adobe Acrobat file titled Triscend A7 _Evaluation_Board.pdf.

27

Building a Working Design Example Using the Triscend A7 Evaluation Board

e & & § #§

Apply power to the visionPROBE Il cable

Plug in the 9 VDC 300 mA power supply and apply power to the cable with the side-mounted barrel
jack.

The polarity of the connector on the visionPROBE Il and board is important, especially if you purchase
your supply from a third-party. For the visionPROBE II cable, the polarity is: Ring = Positive, Tip =
negative, and for the board it is: Ring = negative, Tip = positive.

Plug the visionPROBE Il cable into the board

The cable must be connected to the board using the flexible extender cable. To align the couplings
correctly, match the tiny faint downward-sloping triangles v that appear in the plastic molding of both
the female end of the extender cable and the JTAG_1 male pin socket on the board.

Apply power to the board and switch it on

Plug in the 15 VDC power supply. Connect the power cable to the board with the barrel jack, and set
the power rocker switch to the On position, so that the green LED lights up.

Reset the board

To assure adequate reset signal to the A7 device, press the Reset button on the board.

28

WaTriscend

Invoke FastChip Device Link Utility

Launching FDL from FastChip

Use FastChip Device Link (FDL) to configure, program, and debug the CSoC. With the MyFirstA7
project still opened, click the Device Link button to invoke the FastChip Device Link software.

S

Device Link

FDL is designed to be a stand-alone program, separate from FastChip. FDL can be installed as a
stand-alone application on a computer in your development lab or on the manufacturing floor.

Likewise, if your customer also has a visionPROBE Il cable, you can provide FDL to your end customer
to download a configuration file to your prototype system. That way you can provide just a data file to
your end customer without revealing the internal details of your FastChip project.

Once FDL loads, it displays a splash screen.

MaTriscend.

Triscend

FastChip "™ Devic

29

Building a Working Design Example Using the Triscend A7 Evaluation Board

A welcome screen also appears describing the capabilities of FDL and how to execute FDL from a
command line, minus the graphic interface. If you wish, uncheck the Show this window ... option box
at the bottom of the dialog box to prevent this dialog from appearing the next time that you run FDL.
Click Close to continue.

iy Wigleome | @ Copyright |

-

Welcome to Triscend FastChip Device Link Utility r

Introduction

Once successfully bound by FastChip binder, a FastChip project can be
dowrnloaded wia FastChip Device Link Tility or its command-line
: counterparts. FastChip Device Linke Utility prowides the functionality to: [

& Configure and generate a single downloadable Hex file contaming
cotnplete FastChip project data.

& Diownload such Hex file to the CEo0C development board.

® Control the micto processor with breakopoints and other toolbar
buttons,

® Perform in-dewice debugging for the project.

Command Line Usage

[Show this window at startup

E}Iut-:.risu

The main FDL window should appear. At this point, you may encounter an error dialog box indicating
that FDL has No communication with the target. You can continue to create a configuration file but
you must correct the communication problem before you can download and debug your application.

If you wish to connect to the evaluation board, follow the steps described in the Setup the A7
Evaluation Board section and click Retry. Optionally, click OK to build a configuration file. However, if
FDL cannot communicate with the visionPROBE Il cable, you will not be able to download or debug an
application.

Mo communication with target

® N

|| oretry| P e

The most likely causes for the “No communication with target” message are ...
» Power is not applied to the target board or the visionPROBE Il cable.

» The visionPROBE Il cable is not connected to the target board or to the computer parallel printer
port.

» The computer parallel port is not properly configured for the visionPROBE Il cable. Please refer to
the WindRiver visionPROBE Il Hardware Installation guide, available within the A7 Starter Kit or
on the visionCLICK CD-ROM.

30

MuTriscend

The primary FDL window shows a list of observable items along the left edge of the screen and the
currently monitored list along the right.

File Toolz Help _%T[iscend

e iy —
SGE e ® & ¢ M o
Configurstion Download Breskpoint G0 Stop MCl Resst SingleStep
o =10
Chservable fems Type MName Observable Yalues Setto Value

Type |Nets d
RESULT[Z:0]
D1 .zegs[0:0]
O .seghl0:0]
D1 .z2egc[0:0]
D1 zegd[0:0] [%
O .zege[0:0]
D1 segf[0:0]
D1 .2egol0:0]

e e

Address
|| <Addresss Hezx |

Egillpaste A1 SR et Al
Launching FDL from a Desktop Icon or the Start Menu

Optionally, you can also launch FastChip Device Link (FDL) utility from the desktop icon—if you chose
to this option during installation—or from the Windows Start menu. However, because it is not
launched from an associated FastChip project, it starts blank with “(No Settings)” displayed on the title
bar, and the File menu active. Select New FastChip Device Link Settings ... from the File menu so
that you can associate various memory configurations and clock sources without re-Binding the design.

Type “MyFirstA7” as the Settings Name. Select the TA7S20-ESQ from the Available Target
Devices, just as you did earlier when you created your FastChip project. Use the Browse button to set
the directory Settings Location to the MyFirstA7 project directory. Once you are satisfied, click OK to
save the settings, MyFirstA7.fdl, to your project directory.

~FastChip Device Link Settings
Settings Mame

[yFirstas |
Settings Location
||D:1F'ROGRAM FILES\TTRISCEMDMFASTCHIPprojectsyFirstay fl @gruwse |

¥ Current Target Device: TATS20-ESQ

Available Target Devices : 1 Devics Deserigtion
7y 6-bit g | Availshle Resources
E‘@ !55 m Dedicated Resources

I @ Device Cvervie

~ I @]Es05

| ES12 | Class: 32nit
el ' | Family: A7

1y E520 :
=)y 208-pin PRFP | Device: A7S20
| @25 WHz (Part; TES20540-250 |+ Package Type: PO208
. @40 WHz (Part TES20S40-40) ||| SPeed Grade: ES MHz
[#] 4584-pin BGA, :
7y 32-hit
Sy a7
[y ATS20

] 128-pin LGFP
(51 208-pin PQFP
. @S (Part: TATS20-E53)]
[#] 484-pin BGA,

/ gﬂf xgancel I ? Help ‘

31

Building a Working Design Example Using the Triscend A7 Evaluation Board

At this point, the FastChip Device Link Utility window will look exactly as if you have launched it from
the FastChip toolbar directly.

If you start FDL from the FastChip toolbar, the device link settings <pr oj ect _nane>. fdl is
automatically created in the project directory—eliminating the need to perform the New Device Link
Settings step mentioned above.

Create CSoC Configuration Image

Before actually downloading the design to the CSoC device, the Configuration step combines the CSL
data created by Bind with software application image created by your ARM7TDMI compiler to create
the final configuration file. This is also the point where you specify where the configuration file will be
stored and configure the clock source for the application.

To create a configuration file, click the Configuration icon from the FDL toolbar.
....... —
B
Configuration

Set the configuration options as follows.

—Target Memony Device SDRAM Part
Type Part Part
Jcs0C internal Rt =] |rone =l MonE =

Uzer Defined Part... I

~C51 Bus Clock Source

€ Internal Ring Oscillatar ...

" Clock source at CLK ...

* PLL output synthesizing 32 kHz crystal between XIN and XOUT
Freguency (MHz) Setup Time (msec)

| %[5]
E ~Eecurity

—FastChip CSL Configuration File {.csl

+

DL INF IrStATIMYFirstA7 csl Egrowse |

—Microprocessor Code (Intel hex Format)

[D- Diabimain.hex Fogrowse |
113

Target CSo0C Memory Configuration Imaage File {.cfg or .hex)
"CDnﬂguratiun Imadge File Format

{* Triscend CSoC Configuration Image File (.cfg) 1 Intel Hex File [hesx)

File |[D:L. \MyF irstA7WyF irStAT S0 oy F|Browse

/ QK&JXE&HCEI

? telp
L]

» Target Memory Device: Use the default setting CSoC Internal RAM to directly program the CSL,
and place the microprocessor code into internal RAM. Other options allow you to program an
external Flash device over JTAG and to create a Hex for programming an external Flash or EPROM
device using a dedicated device programmer.

» CSI Bus Clock Source: Select PLL output ... to synthesize a clock frequency from the external 32
kHz watch crystal connected to the A7 CSoC device on the evaluation board.. Type “25” in the
Frequency (MHz) field and set the Setup Time (msec) to “5”.

32

MuTriscend

Enter the following file locations to specify the source data files of the design.

» FastChip CSL Configuration File (.csl): By default, this field points to the *.csl file created during
the Bind process. You can also select a specific *.csl file by clicking Browse.

» Microprocessor Code (Intel Hex Format): This FastChip tutorial purposely skips over the steps to
create and compile an ARM7TDMI application program. Later examples cover coding a great detail.
In order to make this tutorial operate, select a pre-compiled program that increments the RESULT
register whenever the Watchdog Timer expires. Click Browse and select the following file.

<FastChip installation directory>\Projects\MDesign\3rdParty\D ab\nai n. hex
Enter the following file location to specify the output data file.

» Triscend CSoC Configuration Image (.cfg): FastChip combines the CSL configuration file and the
processor code to create a final configuration image. This file contains all the data necessary to
configure the CSoC device on the evaluation board. By default, FDL saves the configuration image
in the current project directory. The configuration image can be saved as either a Triscend *.cfg file
or as an Intel MCS-86 *.hex file, which is compatible with third-party device programmers for
programming Flash and EPROM devices.

There is also an optional Security field where you can read-protect, write-protect, or both read- and
write-protect the contents of the CSoC device. Read-protecting the device prevents monitoring of the
device via JTAG. Write-protecting the device prevents the contents from being re-written. The security
settings remain valid until power is completely removed from the device.

After defining the configuration options, click OK to continue.

= Read CEL file.

= Read code filels).

= WWkite configuration image file ToProgram FilesiTrizcendE ASTCHIPWProject = WyFirst A7 by FirstATCSg
= Write configuration repart file

G E

] | =
Command Complated Succassfuiiy
|—Optinns =p |

o

The Configuration utility creates a configuration report file, <pr oj ect _nane>. cf r, which contains the
register settings for the Memory Interface Unit (MIU) and clock configuration settings.

Download the CSoC Configuration Image

After creating the configuration image, click the Download icon to invoke the Download dialog box.
You must have the visionPROBE Il cable connected between the A7 evaluation board and your
computer before you can continue with this step.

Dovvnload

33

Building a Working Design Example Using the Triscend A7 Evaluation Board

Download allows you to download either a Triscend configuration file, * . c¢f g, or an Intel MCS-86 Hex
file, *. hex. During the Configuration step, we created a Triscend configuration file. Use the default
settings and click OK.

C50C Memary Configuration Imaage File {cfg or hex)
* Triscend C5o0C Configuration Image File (.cfg)

File [D:1... Wy FirstAT\MyFirstA7 CSoC cfg X Browse |
" Irtel Hex File @ hex) - .

JQK ‘ xgancel ? Help
Click OK to start downloading to the CSoC on the development board. When FastChip finishes
downloading, you will see the 7-segment LED start counting up. The display should update about
twice per second.

The resulting dialog box shows the progress of downloading the design. Click OK when downloading
is finished.

In-System Debugging using the FastChip Device Link Utility

After you finish downloading the CSoC configuration data to the CSoC device, you should see the
message “CSoC Running” in the status area in FastChip Device Link Utility. You can start performing
in-system real time debugging using the FastChip Device Link Utility.

The A7 CSoC device—in conjunction with the FastChip Device Link utility, the visionPROBE software,
and the visionCLICK Il JTAG download/debug cable—provides nearly unparalleled debugging
capabilities. Using the A7, you can debug your application ...

* Inreal-time

» At full speed

» Using the same software that you plan to use in production
» Using the same hardware that you plan to use in production
» Without sacrificing resources inside the A7

The debugging capabilities of FDL supplement those of a good source-level debugger such as
visionCLICK. FDL is not intended to perform as a source-level debugger but provides capabilities not
offered by a source-level debugger, such as the ability to monitor flip-flop and logic output values
buried deep within the CSL logic.

34

MuTriscend

Debug Tools

The FDL toolbar offers five separate debugging functions.

&

The Breakpoint button lets you setup two hardware breakpoint units on the A7 CSoC.
Clicking this icon displays the breakpoint dialog box. You will use breakpoint dialog

Breakpoint | pox to setup a breakpoint later.
3§E The Go button restarts program execution whenever the CPU is in reset, halted, or has
- reached a breakpoint.
50
@ The Stop button halts the CPU execution when it is running.
Stop iU
% The Reset button invokes a pull down menu offering the following options.
Reset « Reset the CPU only and halt it at the beginning of the application program

Reset the CPU only and start running the application program

Reset the entire CSoC device, and leave it halted. If you downloaded to internal
SRAM and select this option, you must download your design again. If the
configuration data was downloaded to external Flash, the CSoC device is staged to
load itself from external Flash.

Reset the entire CSoC device and start the CSoC self-configuration process.
Again, if you downloaded the design to internal SRAM and select this option, you
must download your design again. If the configuration data was downloaded to
external Flash, the CSoC device loads itself from external Flash and the CPU
begins executing the application program.

o

Single Step

The Single Step button executes the next assembly instruction pointed to by the
current program counter, when the CPU is halted or at a breakpoint. A single ‘C’-code
statement may compile into multiple assembly instructions. A source-level debugger,
such as visionPROBE, allows you to single-step either assembly or ‘C’ instructions.

In addition to the buttons in the toolbar, there is also the Debug Watch window to display snapshot
value of registers and nets within your FastChip project.

Observe and Control

Using FDL, you can monitor and control the A7 CSoC device from your computer via the JTAG
visionPROBE Il JTAG download/debug cable.

35

Building a Working Design Example Using the Triscend A7 Evaluation Board

While not intended as a real-time debugger for the ARM7TDMI processor, FDL does provide some
visibility into the ARM7’s internal registers. In the Debug Watch window, select the Type drop list
under Observable Items and select CPU Registers.

A

oo

Observable tems

Type [Mets =]
RESUrMets

D1 .2qCPU Registers
[.= Systemﬁgister&
D1 .zqSelector Registers
D1 .zegd[0:0]

[.zeqge[0:0]

D1 .seqgf[0:0]

D1 .zegy[0:0]

Scroll down through the list of available registers to locate the program counter (PC) and select it.

i

U0

Ohzerable tems

Type |CF‘LI Regizters ;I

F12
F13
F14

P

A
RS _Fla
Ra_Fla
R10_FI2

F11_Fl2

*

To place the program counter, PC, into the list of watched items, click the green arrow button while PC
is highlighted.

A

e

Ohserable ltems

Type ICPU Registers ;I

R12
R13
R14
PC
CPSR |
RE_FIG 3
Ra_FlG

R10_Fl2
R11_Fla

-

The PC register appears in the watched items display along with two associated text boxes. The
Observable Values text box displays the value read back from the PC register. Use the Set to Value
text box to modify the value of the associated item. Not all items, such as network connections, can be
modified. Nets can only be monitored.

36

MuTriscend

Also note the radix button to the right of each text box. Each time you click the button, you change the
radix for the displayed value in the text box. The button cycles from Hex (hexadecimal), to Dec
(decimal), to Bin (binary), and then back to Hex.

Type Mame Observable Values SettoValue

Reg PC I He:x I Hez

Now, try adding the current program status register (CPSR) to the watched items display.

You are not limited to just monitoring CPU registers. You can also watch any register that you added
to the CSL matrix. For example, the RESULT register was a new register created earlier in the tutorial.
FDL refers to these registers as Selector Registers because they use one of the CSoC’s Selector
functions to decode the register’s address.

Again, in the Debug Watch window, click the Type list box under Observable Items. This time,
however, choose Selector Registers.

A0

(a1}
Observable tems

Type [CPU Registers -]
" Imets

CPU Registers
=ystem Registers
Selector Registers %

12
R13
14
R&_F
R9_FIQ
R10_FIQ
R11_FI@
R12_FIQ
R13_FIQ

-

Only one register appears in this list, RESULT. Select the RESULT register and click on the green
arrow, adding RESULT to the watched items display.

Type MHame Chservable Walues Setto Walue
Reg P I Hex I Hex
Rey CPSR | Hex | | Hex
SelReg RESULT | Hex | | Hex

FDL now monitors the value stored in the RESULT register by reading RESULT at its assigned output.

However, there are times when you may not want to read the actual register. For example, some

peripherals have registers that are self-clearing when read. Monitoring such registers may cause

strange consequences during debug.

Another safe way to monitor the contents of a register is to monitor the nets connected to the flip-flops

that form the register. Monitor the output of the RESULT register by choosing Nets from the drop list.
Ohszervable ltems

Type |Selector Registers ;I
Mets

CPU R[%gisters

Syatem Registers
Selector Registers

Select the nets connected to the RESULT register, which is a bundle of nets called RESULT[3:0].
Again, click the green arrow to add these nets to the watched items display. Note that nets only have

37

Building a Working Design Example Using the Triscend A7 Evaluation Board

an associated Observable Values text box. There is no associated Set to Value text box because nets
can only be monitored and not controlled.

Type Mame Ohservable Walues SettoValue

Reg pC I He:x I He:x
Reg CPSR | Hex| | Hex
SelRey RESULT | Hex| | Hex
het RESLLTZ:0] | Hex

At the bottom of the watched items display, there is a button labeled Update All. Every time you click
the Update All button, the values in the Observable Values column are first read from the CSoC
device via JTAG, uploaded to your computer, then displayed on your computer screen. The RESULT
command register display should match the number displayed on the LED on the board at the moment.

Click the Stop MCU button, then click Update All to take a snapshot of the current device state.

Type Mame Obszervable Values Setto Value

Reg PC | 0x0000030¢ Hex| [=
Reg CPSR I OB 0000050 Hese | || Hese
SelRey RESULT | O0 0000005 Hex | || e
Met RESULT[Z:0] I 0x05 Hex

A zet &l |

To demonstrate how you can control logic buried deep inside the CSoC device over JTAG, type the
value “0xa” in the Set to Value text box associated with the RESULT register. Then, click Set All to
download this value to the RESULT register. You should see this new value reflected on the
evaluation board’s 7-segment LED display. If the Set to Value text box is left empty, then FDL does not
download a new value to the associated item.

Type Mame Observable Values Setto Walue
Reg PG I 0x0000030¢ Hex| [Hex
Rey CPSR | DxB0000050 Hex | | Hex
SelRey RESLLT | 0x0000000a Hex | | T
Met RESULT[3:0] I O Hex

Biglupaste A1 |

Click Single Step a few times. Observe the 7-segment LED display. Most likely, the display doesn’t
change. However, you may notice that the PC register in the watched items display changes. In this
case, you are single-stepping the ARM7TDMI processor through a program loop. Using this approach,
it may take a few hundred mouse clicks to advance the program to the point where the LED display is
incremented.

A more productive approach is to set up a breakpoint.

38

WaTriscend

Setting Breakpoint

Next, you’ll setup a breakpoint to stop the MCU whenever the 15t digit of the LED is displaying 2 or 5,
using the two CSoC built-in hardware breakpoints. To do that, you will setup 2 breakpoints when
address corresponding to the value command register is written into with the 2 or 5. To do this, you

need to know the address the register on the CSoC’s CSlI bus.

=

Back Fanward Reload Harme Search Metscape Prirt Security

ﬁi@i\aﬁa:ﬁi
[

Address Allocation

Allocation Scheme

‘Lugical Start | Size ‘Fi]l Direction
0x1000_0000 | 1048576 | DOWI

Allocated Symbolic Addresses

Symbolic

.
Size
Name

Instance Name | Space

Logical Physical
Start Start

[RESULT |RESULT CMDREG DATA |0xl00F fffc |0x100f fFc |4

Back to top
= == |Document: Done

You can find the address information in the project report you generated earlier. Bring up the HTML
browser window from earlier. Select Address Allocation to display the CSL selector address mapping

report.

FastChip allocated the RESULT register as a word-aligned register at address 0x100f_fffc. Now that
you know RESULT'’s assigned address, set up the hardware breakpoints. Click on the Breakpoint
button to display the breakpoint dialog box.

Breakpoint Cantral
" Breakpoirts Disabled
" Break on Breakpoint 1
" Brreak on Breakpairt O and 1

{* Break on Breakpoint 0
{~ Break on Breakpoint 0 or 1

Breakpoint O | Breakpairt 1

—Patterns
Address

Addresz Mask

Clin

01 00T_fTc Hex | DT, Hese |

Data

Data hask

%0 Hex ||| B (0| Hex ‘

~ALCRSS

FRead © Wirite & Read o Writs

P tep
n

39

Building a Working Design Example Using the Triscend A7 Evaluation Board

Enable the breakpoint by clicking Break on Breakpoint 0. In the Breakpoint 0 tab panel, type in
“0x100f_fffc” as the Address and “Oxffff_ffff’ as the Address Mask. The underscore character (_) is
just used as formatting and can be eliminated. Setting the address mask to Oxffff_ffff indicates that we
want to match all 32 address lines.

For this step, ignore the data value on the bus by typing “0” for both Data and Data Mask. Leave the
count at 1; and set Access to Read. This sets up breakpoint 0 to match a CSl read to the RESULT
register, regardless of the data value. Click OK to define the breakpoint value.

Next, click Go a few times. Note that the LED increments and stops. Breakpoint O detects a read to
the indicated address and halts the processor. The status bar in the lower left-hand of the screen
indicates “CSoC running. MCU halted.” Clicking the Go button restarts the processor and the status
bar indicates just “CSoC running.”

The two breakpoints units can be used independently or they can work together. In the last example,
Breakpoint 0 halted any time the processor accessed the RESULT register. This time, halt the
processor any time there is a read access to the RESULT register and the data value is either 0x5 or
Oxa.

To accomplish this, set the breakpoint unit to Break on Breakpoint 0 or 1. Then, in the Breakpoint 0
tab, type “5” for the Data match value and “f’ for the Data Mask value.

Breakpoint Cantrol
" Breakpaints Disakled " Break on Breakpoint 0

" Break an Breakpoint 1 {* Break on Breakpoint 0 or 1
" Break an Breakpoint 0 and 1

Breakpoirt 0 | Breskpoint 1 |

~Patterns
Addrezs Addrezs Mazk

@ r 01 00T_ffe Hex | DT e |

Data Data Maskh
| 065 Hex [

~ACLESS
¥ Read {Write (Read or Witite

(f Hex |

/QK I xgancel I ? Help I

40

MuTriscend

Then, click the Breakpoint 1 tab. Fill in “0x100f_fffc” for the Address match value and “Oxffff_ffff’ for
the Address Mask, or copy these values from the Breakpoint 0 tab. Set Data to “a” and Data Mask to
“f’. Click OK when finished.

Breakpoint Cantrol
" Breakpaints Disakled " Break on Breakpoint 0

" Break an Breakpoint 1 {* Break on Breakpoint 0 or 1
" Break an Breakpoint 0 and 1

Breakpoint 0 Breakpaint 1

~Patterns
Address Address Mask
& | 1 00T_ffe Hex | DT e |
Data Data Mask

|| Oxa) Hex ||| (f Hex |

—ACCEss
{* Read {'Write (" Read orWirite

/QK I xgancel I ? Help I

Now, click Go from the toolbar. The LED should continue incrementing until it reaches either “5” or “A”.
Upon reaching either value, the system should halt.

Finally, click Breakpoint again to display the breakpoint dialog box. Change the Breakpoint Control
to Breakpoints Disabled, and click OK. Click Go to restart the processor, if it's stopped. Leave the
FastChip Device Link Utility running.

Importing CSL Logic Functions

So far, all of the CSL logic functions were created using soft modules from the FastChip library. While
the library is extensive, it in no way covers all the potential functions that a designer may wish to
implement. To address this, FastChip allows you to import functions created with third-party logic
design packages, such as schematic capture and logic synthesis.

Supported Logic Design Packages

The logic design software packages that currently support Triscend include ...

» Cadence/OrCAD Capture schematic capture, versions 7.2 and later

* ViewDraw schematic capture

» Synopsys FPGA Express logic synthesis, versions 3.4 and later

» Synplicity Synplify logic synthesis, versions 6.1.3 and later

You can find additional information on using third-party design tools in the following Acrobat file ...
Thi rd_Party_Desi gn_Met hodol ogy. pdf

... stored in the following directory ...
<Fast Chip Installation Directory>\Docs\Desi gn Mt hodol ogy.

41

Building a Working Design Example Using the Triscend A7 Evaluation Board

Likewise, there is more detailed information on using these tools with FastChip in the various Acrobat
files under the following directory ...

<FastChip Installation Directory>\ Docs\Third-party Flows and Tool s

All these tools require a Triscend-specific design library for optimal results. For the FPGA Express and
Synplify logic synthesis packages, the design library is provided by the synthesis vendor. For
schematic capture, Triscend provides the design libraries.

The schematic capture libraries are found under
<FastChip Installation Directory>\Data\Libraries\Schemtic

Documentation on the libraries is available under
<FastChip Installation Directory>\ Docs\Triscend Tool Processes

... as the two following Acrobat files ...
Triscend Primtives. pdf
Tri scend Schemati c Macros. pdf

The various third-party logic design packages create an EDIF 2.0.0 netlist file, which FastChip can read
and convert to a custom-created soft module. The next few steps describe the process to import an
EDIF design.

Creating a Custom ‘heartbeat’ Module

In this example, assume that we want to create a custom logic function that toggles the decimal point
on the LED display every time that the processor writes to the RESULT register. The logic design is
purposely trivial, as shown in the OrCAD Capture schematic blow.

Essentially, when TOGGLE is High, the flip-flop Q toggles on the rising edge of BUSCLK. The flip-flop
output, Q, connects to an output pad called BEAT. The source for BUSCLK is the CSI bus clock
output, shown connecting to the CSI bus primitive, also called BUSCLK. All CSI bus primitives have a
128-bit bus port just for simulation purposes. The bus, SIM[127..0], does not actually appear in the
graphical module interface created FastChip module. Neither does the port called BEAT because it is
already connected to an output pad. The port called TOGGLE is an unconnected input port. This port
will appear in the graphical module interface.

\, Q RIS
TOGGLE —> —b—-—- V&5 BEAT

SCLK_1

BUSCLK GND

IM BUSCLK

SIM[127..0]

Importing the Design

Assume that this schematic has already been saved as an EDIF file. To bring this function into
FastChip, click the Import button from the toolbar.
e—
=

Import

42

WaTriscend

The resulting dialog asks you to specify the name of the EDIF netlist file. For this example, use the
EDIF file saved as part of the MyDesignA7 project. Click Browse.

~EDIF Metlist File { edf, edn, edif)

File || Egmwse I
iy

[Specify & module name other than the EDIF file name ...
%;ﬁg ~Add Imported Module To

{* Add to the Module Library {imported folder}
" Add ta the Module Library and instantiate to the "CSL" area

/QK ‘ xgancel
In the resulting file chooser dialog box, search for and select the file called heartbeat.edn under the

directory <Fast Chi p Installation Directory>\Projects\MDesignA7\ 3rdParty\ EDA.
Click OK when finished.

Logkin: [Z1EDa =] @ g]

|#] heartbest.edn |

P e
"

File matme: Ihear‘tbeat.edn Ok

Files of type: IEDIF Metlist Files (* edf, * edn, * edif) ;| Cancel

The name of the EDIF netlist file appears in the Import dialog box. By default, FastChip uses the name
of the imported file as the name of the newly-created module. The dialog allows you to specify another
name and allows you to specify where the imported module will be placed. For this example, use the
default settings and click OK.

—EDIF Metlist File (edf, .edn, .edif)
File 0. \EDAheartbeat edn FS|Browse |
[Specify & module name other than the EDIF file name ...

%% ~Add Imported Module Ta

i+ Add to the Module Library (imported folder)
 Addd to the Module Library and instantiste to the "CSL" area

i@ X cancel ‘ P e ‘

43

Building a Working Design Example Using the Triscend A7 Evaluation Board

FastChip reads the specified EDIF netlist file, then flattens the logic, and then performs a design-rule
check (DRC) for errors. Click Close.

@ [ECTF TOFAa] Reaner: DR =
@ [DRC Script] Flattening the design...
@ [DRC Script] finished checking netlist hearthest
@ [EDIF format] Reader: DRC done.
@ Prepping......
=2 @ Moving files. ..
ez @ Importing type hearthest... =
@ Imported module type hearthest -

Command Completed Syccossfully

|—Optinns =g |

FastChip saves the imported function in the soft module library under Imported. Unlike the remainder
of the library, the Imported library directory is unique to this design. It contains any and all imported
functions specifically for this project. Because the design is imported as a module, you can instantiate
the same module any number of times within a design.

Using the New Module

To use the newly imported module, double-click on heartbeat in the Module Library area.

Module Library [3)

] Logic Modules
[) Periphersls
) Communication
] £S5l Bus
B0
) Memary
1] Encryption
[) Deprecated
E@ Imported

-0

W

4

44

WaTriscend

Customize the heartbeat module by type “TOGGLER” as the Component Name. Connect the
TOGGLE input to a new signal by typing “UPDATE?” in the connection port text box. Click OK when
finished.

Cotmponert MName ||TOGGLER |

[UPDATE Q—vo

, ik x Cancel

Observe that the module was added to your CSL window and that the number of resources increased.

M
Elye
Ll

RESLLT

2
o1
Sis

TOEGLER

P tep
"

Adding this simple module changed the CSL logic. Observe the Bind button indicates that the binding
is “(not current)”. Don’t Bind the design just yet.

Connect the new TOGGLER module to the RESULT register. Click the RESULT module to edit its
settings.

The RdSel and WrSel outputs on the RESULT module are optional, and as such, there is an option box
to the right of these outputs. Check the box next to WrSel, enabling the connection text box.

45

Building a Working Design Example Using the Triscend A7 Evaluation Board

Type “UPDATE?” in the text box to connect to the signal that drives the TOGGLER module. Click OK.

Cammpanent Matme ||RE8ULT | Component Width |4 g
i Caonnections | Propetties |

r 4 [RESULTIZ0] Q)

[=ZE]
W

UPDATE Qg

? Help

i@ M cencel

Other Imported Library Options

FastChip allows you to perform various functions on a library module. Imported modules support four
functions while the standard FastChip library only supports adding and exporting a module.

To operate on a library module, click the right mouse button on the selected module. The resulting
menu allows up to four different functions.

EI@ Imported 4
@ hearthe=t . -
Pre.bind R oF Add Module Instance

{if CSLCelle Ep Ee-im[%:rt hodule

% Deletewodule
Qm Export Module. ..

» Add Module Instance opens the module edit dialog and will add the module to your CSL logic
when you click OK.

* Re-import Module is useful after modifying an imported module and created a new EDIF file. This
option re-imports the new EDIF file based on the previous import settings.

» Delete Module removes an imported module from the library tree.

« Export Module allows you to create a Verilog or VHDL simulation model for the module, based on
the module’s parameter settings.

Finishing the Design

Complete the tutorial design by ...

» Placing the output pad embedded within the heartbeat module on package pin 103.
» Clicking Bind to re-compile the CSL logic design.

» Creating a configuration file using FDL.

46

MuTriscend

» Downloading the configuration file to the A7 Evaluation Board using FDL and the VisionPROBE
cable.

After completing these steps, the design should behave much like before except that the decimal point
on the right of the LED display should toggle every time the display updates. The decimal point should
light up when the LED displays an even number.

Downloading to Flash

Previous revisions of the design were downloaded and executed from the A7’s internal SRAM. In most
designs, the application program is too big to fit into internal SRAM.

FastChip allows you to directly program a Flash device connected to the A7 device via the
VisionPROBE cable. This is primarily useful during development and debugging. For high-volume
production, you can also create an MCS-86 Hex file, which is compatible with most Flash and EPROM
device programmers. That way, you can provide your manufacturing group with a Hex data file and
they can program a large number of Flash devices on a device gang programmer.

To create a configuration image for Flash, invoke FDL and click the Configuration icon from the
toolbar.

Set Type to Flash Memory and select the Flash Part number. Specifying the entire Flash part number
tells FastChip which Flash programming algorithm to use, the size of the Flash memory sectors, and
the access time for the Flash device. Most A7 Evaluation Boards have an AM29LV004B-120 Flash
device in socket U11. Double-check the part number for the Flash memory device installed on your A7
evaluation board and make the appropriate setting.

Again, use the PLL output and set the Frequency to 25 MHz and the crystal Setup time to 5 ms. The
CSL configuration file and processor code settings remain the same. However, for the Triscend CSoC
Memory Configuration Image File, choose to create an Intel Hex File (.hex). This Hex file can be
used by your manufacturing organization to program the specified Flash devices in volume.

47

Building a Working Design Example Using the Triscend A7 Evaluation Board

Click OK when finished.

—Target Memaory Device

SORAM Part
Type Part Part
[Fizsh Memary = [emza0von4p-120 =l morEe |

Uszer Defined Part... I

~C51 Bus Clock Source
£ Internal Ring Oscillstor ...

€ Clock source at CLK ...

¥ PLL output synthesizing 32 kHz crystal between XIH and X0UT
Freguency (MHz) Setup Time (msec)

| | 5|
@E ~Security

—FastChip CSL Configuration File {.csh
(DL IMF irstATIMYFirstA7 csl

e

@growse ‘

—Microprocessor Code (Intel hex Format)
|D:..iDiakimain hex

@growse ‘

141
Target CSoC Memory Configuration Imaae File {cfg or .hex)

’—Cnnﬂguratiun Image File Format

{+ Triscend CSoC Configuration Image File {.cfg) (" Intel Hex File [.hex)

File |[D.. AMyF irstATWyFirstAT C Soi.cig FCBrowse

/OI’(xgancel ‘ ? Help ‘

To download the design to the A7 Evaluation Board, click Download from the FDL toolbar.
Choose the Intel Hex File option, and then click OK.

—C50C Memary Configuration Imaage File {cfg ar hesx)
i d CZoC Configurstion Image File (.cfg) ...

Tt R e Rt L e i

— File [D:1...IMyF irstAT Ny Firsta7 CSoC. hes B |Browse |
E. Tipe Ear‘t
[Fta=h Memary =] Jam2alvonze-120 =l

Uzer Defined Part...

48

WaTriscend

FDL downloads the Flash programming algorithm into the A7 device, using the CSoC to provide the
low-level Flash control. The A7 CSoC erases the Flash device, loads the configuration image, then
resets itself to begin executing you application.

= Download Flazh programming algorithm to CEoC. -
= Configure CSoc to run programming algorithm.
= Reszet and run CPLL

= Erasze Flazh memory ...

— = Program Flash with configuration imade ..
:;@ = Reset and run CSoC.

= Endd at Mon Jan 15 15:43:59 PST 2001

a

£l |
Command Complotad Successfuily
|—Opti0ns =P |

To prove that you are executing from Flash, turn off the A7 Evaluation Board and then re-apply power.
The tutorial design should start executing. The LED should increment and the decimal point should
alternately blink on and off every time the display updates.

Part 1 Complete!

Congratulations on creating your first A7 Configurable System-on-Chip (CSoC) design! So far, you
assembled a small design using the FastChip library and downloaded it into working hardware. You
viewed the internal registers and logic using the FastChip Device Link (FDL) utility. You added a
custom logic function imported from schematic capture and downloaded the completed design to Flash
on the Triscend A7 Development Board.

Building a Working Design Example Using the Triscend A7 Evaluation Board

PART 2: Diab Compiler and visionCLICK

If you have

not completed Part 1...

you can continue with Part 2, but only with the MyDesignA7 project provided with FastChip.
Whenever the tutorial refers to MyFirstA7, perform the same steps using the MyDesignA7 project.

In Part 1, you completed a simple design using only FastChip and then downloaded and debugged the
design using the FastChip Device Link (FDL) utility. In that exercise, you imported the application
software, mai n. hex, from another project, MyDesignA7, and used the FDL Configuration function to

combine the application code with the CSL design.

At this point in the tutorial, your MyFirstA7 project directory should look similar to the following graphic.

FastChip generated all files in this directory—including the Folder ImportedForMyFirstA7.

will be working with the software application.

& C:\Program Filezs\Triscend\FastChip\Projects\MyFirstA7

In Part 2 you

1]

File Edt “iew Go Favortes Help ‘
J = . [‘ %) | X .
Back Fanxard Up Cut Copy Pazte Undo Delete Properties Wigws
J Address ID C:\Program Filesh\Trizcend'F astChip\Projects\MyFirsta 7 j
MvFirstA7
Hame | Size | Type | Modified

@ File Folder 1/24/01 358 PM

) L MuFirsth 7. ade 3B ADCFie 1/24/01 345 PM
g;'siﬁp?ﬂ';f”” to view its MyFirsti 7. KB AL File 1/24/01 4:00 PM
MuFirsth 7. b 33KE EFile 1/24/00 4:01 PM

FyFirsth 7 b 7KB BM Filz 1/24/01 4:01 PM

FMuFirsth 7. br 1KB BR File 1/24/01 4:02 PM

,u!L byFirstd 7 csl 174KE Triscend FastChip ... 1/24/01 4:02 P

il MyFirstA7 fop 1KB Trigcend FastChip ... 1/24/00 3.45 P

ity MyFirsta 7t B Triscend FastChip ... 1/24/01 4:04 PM

MuFirsth 7. qui EKB GUI File 1/24/01 4:04 PM

FuFirsth 7 b ZKB Cor C++include file 1/24/01 4:00 PM

MuFirsth 7. his 1KB HIS File 1/24/01 359 PM

&1 MyFirstA 7. hitml 188 Microsoft HTML DL, 1/24/01 3:54 P

FuFirsth 7 ioc 1KB 10C File 1/24/01 4:00 P

MuFirstd 7. log JEKE Text Document 1/24/01 4:04 PM

FyFirsth 7. m 5KE M File 1/24/01 4:00 P

MuFirsth 7. 2ZKB M File 1/24/01 359 PM

FuFirsth 7. o 3B FFie 1/24/01 4:01 PM

MuFirsth 7. pad 1KB PAD File 1/24/00 4:01 PM

FuFirsth 7. prn 7KB PM File 1/24/01 4:01 PM

MuFirsth 7. ipt KB Test Document 1/24/00 4:001 PM

FyFirsth? tic 2KB TIC File 1/24/01 345 PM

MuFirsth 7. mref 1KB <REF File 1/24/01 4:02 PM

@ byFirstd? mnotes html 1EB Microzoft HTML D 1/24/01 3:45 PM

MuyFirstA 7C50C. cfg 213KE Test Document 1/24/00 4:02 PM

MuyFirstA7CS ol cfr 1KB CFR File 1/24/01 4:02 PM

|519KB

| = iy Computer

N

50

MuTriscend

Part 2 uses the application example in the \ Di ab directory, which is designed to work with the Diab
DCC compiler from WindRiver. Since A7 has a standard ARM7TDMI core, any standard compiler that
supports ARM7TDMI can be used to compile application code for A7. This release of FastChip offers
application examples with sample makefiles for both the ARM ADS compiler and the Diab DCC
compiler from Wind River Systems. The tutorial exercises assume that you are using the Diab DCC
Compiler.

In order to complete Part 2, you must have the Diab DCC Compiler installed on your host computer.
Review the Getting Started with A7 manual for installation instructions. In addition to the Diab
compiler, you also need a text editor.

& C:\Program Files\Triscend\FastChip\Projects\MyFirstA7\3rdParty\Diab
Fll= Edt “iew Go Favoites Help ‘
- | X) | X =
Back Fariaand Up Cuit Copy Pazte Undo Delete Properties Wiews
J Address ||:| C:\Pragram FileshTriscend\FastChiphProjects\oFirsts P 3rdParkytDiab j
Diab
Mame Sizel Type I b odified
init.z KB Azzembler souce file 1/24/01 1
Select . to view it main. c BB C zource file 1/25/01 9
elect an icon to wiew its = .
description, main.did 2kB DLD File 1/24/011
main. elf KB ELF File 1/24/011
main. hiew KB HEX File 1/24/011
b akefile 2kB File 1/24/011
ram.did ZkE DLD File 1/24/011
ram. elf 7B ELF File 1/24/011
< | 2
| |28.F"KB |_§l ky Compiter o

The \ Di ab directory contains the following files:

* init.s: Thisis a low-level initialization file that sets up a number of housekeeping items such as
the initial vector table and the initial stack pointer.

 main.c: Thisis the main application source file. Later in the exercise we will make some
modifications to this file to illustrate tools usage.

« Makefil e: This sample makefile contains the rules for compiling and linking the application.

*_dl d files: These are Diab linker command files which instruct the linker to link your application
to the A7’s memory map. The mai n. dl d file links the code for executing from external Flash
memory; the r am dl d links the code for executing from the A7’s internal SRAM.

- *.elf files: These are standard object files generated by the Diab compiler and linker.

Mai n. el f was linked using the mai n. dl d linker file and r am el f was linked using information in
the ram dl d file.

* mai n. hex: This file is the application code in Intel Hex format. This file is needed by FDL for
combining with CSL configuration file to generate the final downlodable image. Since this release of
FastChip uses only Intel Hex format files, mai n. hex was converted from mai n. el f during the
build process.

51

Building a Working Design Example Using the Triscend A7 Evaluation Board

Understanding the Application Code

Taking a closer look at the application code main.c, it contains the following routines:

The i ni t () function initializes the dedicated resources on A7, such as the timers, the UARTS, etc. In
this application, the only dedicated resource used is the Watchdog Timer. The i ni t () function should
be expanded if additional dedicated resources are used in the application.

The cl ockFreqHz() function returns the clock frequency in Hertz. In this application, the watchdog
timer is programmed to generate an interrupt every 500 ms (half second). The watchdog driver code
calls this function to calculate the appropriate watchdog timer time-out value.

The wat chdogTi ner () routine configures the watchdog timer to generate an interrupt once every
500 ms. Additionally, the Watchdog Control Register is configured to prevent the watchdog timer from
generating a device reset in the event of a watchdog timeout.

The | RQ _Handl er () function is the C-language part of the Interrupt Service Routine (ISR). This
function is called from the | RQ_W apper () function inside i ni t. s. Because this application only
uses one interrupt—generated by the Watchdog Timer— the control logic is relatively simple. Simply
clear a bit in the WATCHDOG_CLEAR_REG register, increment the RESULT register, and then return.
There is no software prioritization of interrupts in this simple application.

The C_Enrty() function is the main application function. It initializes both hardware and software and
then enters an infinite whi | e loop. Most embedded applications never end.

The whi | e loop runs until the watchdog interrupt is generated. The interrupt service routine
increments the RESULT register, which is implemented in the A7’s CSL logic. This, in turn, causes the
7-segment display value to change on the A7 evaluation board. Control is then returned to the whi | e
loop until the next interrupt occurs.

Editing main.c

In this section, we’ll make a few changes to the source file, compile it and debug it with the
visionCLICK debugger.

Edit the following locations inside the mai n. ¢ module to do the following.

» Atthe top of the mai n. ¢ module, there is a directive that includes a header file. Because this code
was copied from another project, the referenced file is “MyDesignA7”. Change this to “MyFirstA7”,
the name of your FastChip project.

» Add a global variable called see_resul t. The value of see_r esul t is set equal to RESULT
inside the while(1) loop. After an interrupt is serviced, RESULT will change. This change will be
reflected in the see_r esul t variable once control is returned to the main loop. You will use
visionCLICK to monitor the value of this variable.

* Inthe original | RQ_Handl er () function, the value of RESULT is incremented by 1. Change this
so that RESULT increments by 2.

The required changes are shown in the following illustration in bold print. You need a text editor and
for this example, Wordpad is sufficient. Start your favorite text editor and open the nmai n. c file located
in the 3r dPar t y\ Di ab directory of your FastChip project directory. Make the necessary changes and
save the file.

52

MuTriscend

/* MyDesi gnA7.c */

/*

ER R O S I O kS O O kO I O O O
* MyDesi gnA7. c

* Copyright(C 2000 Triscend Corporation

R R S S S S O S S O

*/

#i ncl ude "MFirstA7. h"

/*

EE R R R R R R S R R I R R O
* GLOBAL VARI ABLES

EE R R R R R R R S R I R L
o/

unsi gned int see_result;

void | RQ Handl er (void) {

/1 if (IRQis a Watchdog Interrupt) then
/1 Cl ear Watchdog Interrupt and indicate timeout.

if (GET_BIT (INT_I RQ STATUS REG | RQ WATCHDOG BIT)) {
SET_BI T (WATCHDOG CLEAR REG WD INT_CLR BIT);

/1 If the watchdog tiner tinmes out, increnent the
/1 RESULT register

TWORD(RESULT) += 2;
}

}
/*

EE R R S I I I I R S R I R I I I R I R R I R R R S R R I R R R R R S R R I I I S S I I
* MAI'N FUNCTI ON
EE R R S I I I S I I S R R I R R I I R I R R I I R R S R R I R R R R R S R R I I I I S I
*/
void C Entry () {

// initialize the A7's dedicated resources used in this

/1 design
init ();

// initialize variables
TWORD(RESULT) = O0;

/1 setup and start watchdog timer tiner with interrupts
wat chdogTi mer (TI MER_MS) ;

/1 primary task waits until Watchdog Tinmer interrupt occurs

while (1) {
/**

*** AN EMBEDDED APPLI CATI ON NEVER ENDS ***

* k% * %k k

* k% Add your application code here! *x ok

**/

see_result = TWORD(RESULT) ;
}

53

Building a Working Design Example Using the Triscend A7 Evaluation Board

You now must recompile the application. To do so, perform the following steps.
» Save the changes to the nai n. c file
* Open a DOS or command prompt window

e Change to the correct directory
cd “<Installation Directory>\Projects\MFirstA7\3rdParty\ D ab”

* Type the command make clean to remove any unnecessary files

e Type the command make

If you have correctly installed the Diab compiler, the application will be compiled and linked. If you
experience error messages related to the Diab tools, make sure that you have set the path to include a
pointer to the \ bi n directory under the Diab install directory. The Diab install program should have set
the path. Also make sure that there is an environment variable called LM LI CENSE_FI LE pointing to
your fl exI M| i cense. dat file. Finally make sure thatthe |l i cense. dat file contains a valid
license for Diab. Refer to the Getting Started A7 Manual for Diab installation information.

C:\Program Files\Triscend\FASTCHIP\Projects\MyFirstA7\3rdrParty\Diab>make clean
rm -f *.0 *.elf *.map *.hex *.s32

C:\Program Fi1es\Triscend\FASTCHIP\Projects\MyFirstA7\3rdParty\Diab>make
das -tARMLS:simple -g -0 init.o init.s

dcc -tARMLS:simple -I../../../../include -I../../ -g -c -0 main.o main.c
dld -tARMLS:simple -0 main.elf init.o main.o main.dld -1c -m2 > main.map
ddump -Rv main.elf -o main.s32

mhc -h main.s32 main.hex

mhc verl.0.3 Motorola S data <-> Intel Hex data Converter.

(©)1997-1998 Cow Project workshop.

Convert flag -h

Input file main.s32

output file main.hex

Making Intel Hex file.

Input file size=3954

output file size=0

Finished!

d1ld -tARMLS:simple -o ram.elf init.o main.o ram.dld -1c -m2 > ram.map

54

WaTriscend

Once the application has been recompiled and re-linked, the contents of the directory should contain
the following files. Check that the timestamp of the files are correct.

& C:\Program Files\Trizcend‘FastChip\Projects\MyFirstA743rdParty\Diab
File Edit “Wiew Go Favoites Help ‘
» [| ¥) | X =z
Back Earixand Up Cut Copy Pazte Undo Delete Properties Wiews
J Address II:I C:Program FileshTriscend'F astChipProjectsyyFirsta 74 3rdParsDiab j
Diab

Iame Sizel Type | Modified
= 3B O File 1/25/01 9
|) L init.z KB Azzembler souce file 1/24/01 1
Solect an icon fo visw its main.c SKE T source file 1/25/01 9

escriptian, = - i

main.did 2kB DLD File 1/24/011
main. elf KB ELF File 1/25/01 9
main. hiew KB HEX File 1/25/01 9
[nair. map 3B Test Docurnent 1425401 3
main.o KB O File 1/25/01 9
main. s32 4B 532 File 1/25/01 3
I akefile ZKE File 1/24/011
ram.did 2kB DLD File 1/24/011
ram. elf kB ELF File 1/25/01 9
L3, Map 3B Test Docurnent 1/25/0 3
1| | 0
|43.E|KB |_§l ky Compiter o

55

Building a Working Design Example Using the Triscend A7 Evaluation Board

Repeat the FDL exercise from Part 1 of the Tutorial to reprogram the Flash with the latest reversion of
the application. You do not need to rebind the FastChip project since you did not make any changes in
the CSL portion of the project. You need only to change the FDL configuration.

—Target Memory Device SDRAM Part
Type Part Part
[Flazh hemary =l Jamza0von4E-120 || ronE =1

Uzer Defined Part... I

~CSIBus Clock Source
 Internal Ring C=cillatar ...

" Clock source at CLK . ..
{* PLL output synthesizing 32 kHz crystal between XIN and XOUT
Freguency (hMHZ) Setup Time (nsec)

I 25 [5]
E [Security

—FastChip CSL Configuration File {.csh

+

||D:‘L...IruwFirst&?leFirst&?.csl B Browse \

~Microprocessor Code (ntel hex Format)

[Di-Diatimain.hex Fgrowse
+ 4}

Target CSoC Memaory Configuration Imaage File {cfg or _hex)
"CDnﬂguratiun Imane File Format

{* Triscend CSoC Configuration Image File (.cfig) 1 Intel Hex File [hes)

File |[D:L. \MyF irstA7\WyF irStAT C S0 oy F|Browse

/ QK xgancel ? Help

In Part 1, the Microprocessor Code (Intel Hex Format) entry pointed to the mai n. hex file in the
MyDesignA7 project. You need to change this entry to point to the mai n. hex that you just built. After
you make this change, click OK and start the FDL download utility to download to the target device.
Once download is finished, the 7-segment display should start incrementing by two instead of by one.

Debugging with visionCLICK

In the next part of the tutorial, you will debug the application using the visionCLICK source-level
debugger. The purpose of this tutorial is to demonstrate some basic visionCLICK capabilities. For
detailed information on how to use visionCLICK, please refer to the visionCLICK manuals included on
the visionCLICK CD-ROM.

By now, you should have installed visionCLICK. The default installation directory for visionCLICK
software is c:\estii. This part of the tutorial refers often to the \estii install directory, substitute it with
the actual installation directory when needed.

When you start visionCLICK for the first time, some general set up is required. This tutorial describes
the required configuration steps. Then, you will download a version of the application you modified in
the previous steps of this exercise.

Both visionCLICK and FDL communicate with the target board via visionPROBE and the two programs
cannot share that link. Only one can be running at any given time. Make sure that the FDL utility is not
running when you start visionCLICK.

56

WaTriscend

The first step is to start visionClick.

& visionCLICK 7.0
File Run/Step Trace /Break Toolz ‘window Help

[_[=]x

[CctuaW /v BQa===Fm@ [HLFC L

|SHROB=EER 40

| he: |

STUICH:

i'Welcome To visionCLICK

visionCLICK

Choose How You Want To Start:

!EB {Watch [Manual Update]

Scope. |

A)| ‘watch1 | ‘wialch 2| ‘watch 3| Lucalsl

Rew. 7.60& [7.60.0005]
Created Or: 11417400 10:07:00 &
Copyright 'find River, 1934-2000

Load/Reset

o Active Project To Resume

Fesume Last

Mo Active Project To Load

JEN S
! Terminal: Port Closed

Click on 'Configure’ Ta Chaose Or Configure An Active Project

SEE D

=] e

FOINT TYPE I START L

57

Building a Working Design Example Using the Triscend A7 Evaluation Board

The first time that you start visionCLICK there will not be an active project. Once you complete the
configuration, visionCLICK generates a file, estii\projects\active.prj. The first time you run
visionCLICK, there is only one active button in the Start Window — Configure. Once an active project
has been selected, all three buttons will be active when you start visionCLICK. If your display does not
match the above graphic, it means that visionCLICK was previously started and a project was selected.
In this case, the visionCLICK window may look like the following.

& visionCLICK. 7.60A (ARMZTDMI_C_Demo_BE@01000000. pri)

File Run/Step Trace /Break Tool: Window Help

|[EctuBW /e EQa=l=zFmE |2 HeF C

ot Mool Updac BT Tow A= e
o|mM F | L 0x | < SCDpe...II =

~| ‘watch1 | ‘fatch 2| iwfatch 3| Localsl =

|SHROB=EDR & s [He |

i Welcome To visionCLICK [x]
]] 5T =
visionCLICK | of
Rev. 7 B0& [7.60.0005)
Created On: 11417400 10:07:00 Ak P [=1 E
Copyright “ind River, 1934-2000
FOINT TYPE START A
Choose How You Want To Start: = WindRver I
T 1] Debug the ARMFTOMI Target Using visionPROBE Owver LPT1.
2] Fiead Symbals fram C:hestitestdemo \ARM 7T DMINC_dema'BE0<0100000040x01000000. ab.
i 3] Load C:h\estibestdemo’aR 7TDMINC_demo'BE Y0=01 000000%0<01 000000.bdx ta the Board,
i | gad/Reset lind Resst to __main.
vLiCK 1] Resume Debugging the ARMZTDMI Target Using visionPROBE Ower LPT1 —bl
2] Read Symbals from C:hestivestdemo\ARM 7 T DMINC_demaotBE 4WOx01 00000040071 000000, ab.
3] Update All Open Windows. Do Mat Reload Code

Resume Last

Fie-configuie the Communications Settings
tind/0r The Debug Files and Paths

[I
i Terminal: Port Clozed Configure

58

MuTriscend

Your display will look different but the configuration steps will be the same. Look at the contents of the
C:\estii\projects directory.

& C:AESTII\projects H=] E
File Edit Wiew Go Favoitez Help ‘
J = _ [i4 ‘ 4) ‘ X :
Back Farsard Up Cut Copy Paste Undo Delete Properties Wiews
J.t’-‘« ress I[:I CAESTINprojects j
projects
Mame Sizel Tupe | b odified |
| steomm.ini 2KB Configuration Sefti.. 1/26/01 10:21 &M
) o wow 024 ini 1B Configuration Setti.. 8/8/97 4:04 P
g:'s‘iﬁp‘;”m'jm“ to visw its =) vowhdlin KB Configuation Setfi.. 8/8/97 4:45 PM
wewB00.ini 1KB Configuration Setti.. 8/8/57 427 PM
r% WCwin.ini 2KB Configuration Setti... 1/26/01 10:21 &k
EAHM?TDMI C Demo BEE01000000.pr 1KE PRJ File 1/26/01 10:21 &M
EAHM?TDMI C Demo Intervork BEGE... 1KE PRJ File 11/14/001:14 PM
EAHM?TDMI C Demo Intervork LEGEO... 1KE PRJ File 1114/001:12 PM
EAHM?TDMI C Demo LE@&O1000000.p1 1KE PRJ File 11/14/00 12:47 PM
3 Coldfire C Demo.pr 1KE PRJ File 1/26/01 3:36 AM
E Coldfire Cpluspluz Dermo. prj 1KE PRJ File 1/26/01 3:36 AM
E CPU32 C Demo@000.pr 1KE PRJ File 1/26/01 3:36 AM
E CPU32 C Demo@400000.or 1KE PRJ File 1/26/01 3:36 AM
E CPU32 Cplusplus DermodE000.pri 1KE PRJ File 1/26/01 3:36 AM
E CPU32 Cpluzplus Demod400000.pri 1KE PRJ File 1/26/01 3:36 AM
E MIPS C Demo.pr 1KE PRJ File 1/26/01 3:37 AM
E PowerPC C Demo.prj 1kE PRJ File 1/26/01 3:35 AM
2 PowerPC Cplusplus Demo.pr 1KB FRJ File 1426401 5:35 &M
2 tiscendar. prj 2KE PRJ File 1/26/01 5:20 AM
E’l 7400sandpoint.cfg 13KE Text Document 1043400 2:30 PM

1| J i
| |30.2KB | = by Computer v
It contains a number of predefined projects, including t ri scenda?. prj . When you configure
visionCLICK the first time, visionCLICK will select “ARM&TDM C Denp BE@1000000. prj ” as the

default active project. It selects this project because it is first *. prj file in the list. Select the

t

ri scenda?. prj file.

59

Building a Working Design Example Using the Triscend A7 Evaluation Board

After starting visionCLICK, click the Configure button from the Welcome window to change the default
configuration. The configuration window appears. Maximize this window so that you can see all the
entries.

isionCLICK 7.604 (ARMZTDMI_C_Demo_BE@01000000.prj) - [PROJECTS / LDAD]

B Fie Fun/Step Trace /Break Tools “Window Help == x|

|SHROB=EDR & s [He |

Bl nBW/Y BEQa=(=2F@ (2B eHCh

Load Dplionsl Cnmmunicationsl Configuralionl

=] Active Project |nM?mm_c_nm_BE@n1nnnnnn.prj ﬂ
Parameter Setting (Type or Use Right Mouse)
%g Description Demonstration Program for ARMTTDMI

Emulator Register
Configuration File

% Symbol File C:yestiiestdemo\ARMTTDMING demo\BEY0x0100000010x01000000.ab
- é Dovnload File C:yestiiestdemo\ARMTIDMIAG demo\BEY0x010000001%0x01000000.bdx
. E Source Paths C:yestiiestdemosrc\chiRMSource

@ Reset Symbol _ main

- @ Microprocessor ARM7TDMI

- , Target Control visionFROBE
. RTOS Debugiydng HOHE
5 Event System Hone

{ MHZ Frequency {MHz) 25 MHz

Text Editor C:\Program Files\fccessories\wordpad. exe

Hake /BAT File C:AESTIT\estdemo\IRMTAC DemoLittlel

H ToolBar File
An

T
- Ruto-Playbhack

= =

Mew | Activate Save | BazeDir ... | Delete aK Cancel Config Regs |

|Loading Mew Reqister Layout...Done | | |

60

WaTriscend

Scroll down to the bottom of this window until you locate the other projects.

& visionCLICK 7.604 (ARM7TDMI_C_Demo_BE&01000000.pri) - [PROJECTS 7 LOAD]

B File Run/Step Trace/Break Tools ‘window Help ;lilil

BelnBW/ /Y EQq==c=FE 20 LHCh (SHROG=EER &GS 0! |He |

Load Dplionsl Cnmmunicationsl Configuration I
=
== Ruto-Playback
==, . .
| 5im Register File
E®; starting Stack 0
| %&* nadress(highest)
| | E®; Ending Stack
1 2 ess (Lawest) 0x00000000
ﬂ Saved Project I triscenda?.pri
14| Saved Project | 1xes_c pemo.pri
14| Saved Project | CPU32 Cplusplus_Demo@000.pri
14| Saved Project | CPU32 Cplusplus_Demo@d00000.prj
14| Saved Project | crus2_c_pemocooo.prs
14| Saved Project | CPU32_C_Demo@400000.prj
ﬂ Saved Project I Coldfire Cplusplus Demo.prj
14| Saved Project | coratire ¢ pemo.pri
ﬂ Saved Project I PowerPC_Cplusplus Demo.pr]
14| Saved Project | Powerrc_c pemo.prs
14| Saved Project | ARMTTDMI_C Demo_Interwork BE201000000.prj
14| Saved Project | ARMITDMI_C Demo_Interwork LE201000000.prj
14| Saved Project | ARMITDMI_C_Demo LEG01000000.prj
ZI
New | Activate | Save | BaseDir ... | Delete oK Cancel Config Regs |

| Loading Mew Register Layaut...Done [[[

61

Building a Working Design Example Using the Triscend A7 Evaluation Board

Locate the triscenda?.prj file and double click on the file name. The opens the triscendA7 project as a
“Saved Project”. In this part of the exercise, you will modify some project settings and then make this
your active project.

& wigionCLICK. 7.604 [triscenda? prj] - [PROJECTS / LDAD]

B Fie Fun/Step Trace /Break Tools “Window Help =121
B enBW Y (BQa=(z=FE 2N LECh SHROE=EMR & D HC |

Froject Configuration | Load Dplionsl Cnmmunicationsl Configuralionl

=] Saved Project | triscenda?.pri =l
Parameter Setting (Type or Use Right Mouse)
- %g Description Triscend MyDesigni?

Emulator Register

Configuration File C: \ESTII\Regli‘lles\ﬁm\ﬁm?tdnn\Tr1scend\ta?_$luﬂ{. req

Symbol File C:YProgram Files\Triscend\FastChip\projects\MyDesignh 1y 3rdParty\Diabyram.
é Dovmload File C:\Program Files\Triscend\FastChip\projects\MyDesigni 1y 3rdParty\Diab\ram. bdx
@ Source Paths C:\Program Files\Triscend\FastChip\projects\MyDesigmh T\ 3rdParty\Diah
- @ Reset Symbol _ bhegin J

@ Microprocessor TRISCEHDAT

, Target Control visionPROBE
RT0S Debugodng HOHE
- E Event System Hone

- MHZ Erequency (MHz) 40 MHz

Text Editor C:\Program Files\Windows HT\Accessories\wordpad.exe

Hake /EAT File

- T&I ToolBar File
el

L
Ruto-Playback

s T

Mew | Activate | Save | BazeDir ... | Delete | aK | Cancel | Config Regs |

|Loading Mew Reqister Layout...Done | | |

Entries in the project file are already set to use the MyDesignA7 FastChip project. You need to change
several entries to point to the MyFirstA7 FastChip project you are currently working using. Previously
when you built the application, Diab created a number of files in your project directory. One of the files
created is named r am el f. This file contains both the downloadable code and the application symbol
table information. The visionCLICK program requires this information but uses proprietary file formats.
The first two entries below relate to those files.

The following entries should be changed:

« Symbol File — edit the path to point to the r am ab file. Place the cursor over this entry and click
the right mouse button. Select Edit this Setting and change the directory to point to the MyFirstA7
project instead of MyDesignA7. Be sure that the value points to the correct drive. The ram ab file
will contain all the application symbol information. It does not exist now. You will create it below.

» Download File - edit the path of the r am bdx file. Again, place the cursor over this entry and click
the right mouse button. Select Edit this Setting and change the directory to point to the MyFirstA7
project. The ram bdx file will contain the downloadable file used by visionCLICK. It does not exist
now. You will create it below.

» Source Paths - edit the path to point to the MyFirstA7 project. If you use full pathnames in the first
two entries and if all the source code is located in a single directory—as it is in this exercise—this
entry is not required. If source code is located is several different directories, each path should be
listed. Pathnames should be separated by a semi-colon (;).

62

MuTriscend

» Make/BAT File — This file does not exist yet. Later in the exercise you will create this file. By
placing this batch file in your project directory you will be able to rebuild the application from within
visionCLICK. For the time being, edit the path to:

<Fast Chi p_i nstal | _directory>\projects\ MFirst A7\ 3rdPart y\ Di ab\ makeal | . bat

» Text Editor — edit the path to point to your favorite text editor. The current settings are for
Wordpad installed on a Window NT machine using the default options.

This configuration step only needs to be done the first time you start visionCLICK for a new project.
This information is saved in a file called t ri scenda7. prj inthe estii\ proj ects directory. Review
the visionCLICK manuals for steps required for starting a new project. After you finish the configuration
changes, the Project Configuration window should look like the following:

& wigionCLICK. 7.604 [triscenda? prj] - [PROJECTS / LDAD]

B3 Fie Fun/Step Trace /Break Tools “Window Help ==
B enBW Y (BQa=(z=FE 2N LECh SHROE=EMR & D HC |

Froject Configuration | Load Dplionsl Cnmmunicationsl Configuralionl

=] Saved Project | triscenda?.pri =
Parameter Setting (Type or Use Right Mouse)
%g Description Triscend MyDesigni?

Emulator Register

Configuration File C: \ESTII\Regli‘lles\ﬁm\ﬁm?tdnn\Tr1scend\ta?_$luﬂ{. req

% Symbol File C:\Program Files\Trizcend\FastChip\Projects\MyFirstAT\3rdParty\Diah\ram. ab
é Dovmload File C:\Program Files\Triscend\FastChip\Projects\MyFirstAT\3rdParty\Diab\ram.bdx
@ Source Paths C:\Program Files\Triscend\FastChip\Projects\My¥FirstAT\3rdParty\Diah

@ Reset Symbol _ bhegin

o @ Microprocessor TRISCEHDAT

o ' Target Control 1isionPROBE

- RT0S Debugying HOHE
E Event System Hone
| MHZ Fregquency (MHz) 40 MHz
Text Editor C:\Program Files\Windows HT\Accessories\wordpad.exe
Hake /BAT File C:yProgram Files\Triscend\FastChip\ProjectsMyFirsti7\3rdParty\Wiabhwmakeall.bhat
T&I ToolBar File
“m
L !
| G Ruto-Playback
Mew | Activate | Save | BazeDir ... | Delete aK Cancel Config Regs |

|Loading Mew Reqister Layout...Done | | |

At this point, click Activate button.

63

Building a Working Design Example Using the Triscend A7 Evaluation Board

The configuration window disappears and a temporary dialog box indicates that visionPROBE is being
initialized. During this process, visionCLICK reads in a register file. The following dialog box appears.

®” visionCLICK 7.604 [tiscendaZ_pri]

File Run/Step Trace /Break Toolz ‘window Help

[CctuaW /v BQa===Fm@ [HLFC L

|SHROB=EER & DB H |

¥aich Manual Update REIES] cevos MEES
0| M F LJ Ox | < Scope || -

ﬁ watch 1 | waich 2| watch 3] Locals| =

{PROJECTS 7 LOAD JSi[=] 3
Project Configuration | Load Dptionsl Communicationsl Canfiguration I
=| Saved Project I triscenda?.pri ;I
| Parameter | Setting (Type or Use Right Mouse) |
1 DOWMNLDADING CONFIGURATION X &
2
“warming Downloading a new configuration file will destray the current configuration.

Setting Configurat

By ... Please Wait
Do pou want to zave this version to a new file before proceeding?

. . | START A
"Y'es" will prampt pou for the file zave name.

‘Mo will skip the current settings save.

‘Cancel' will abart the configuration download.

Yes Mo Cancel [| LI
L2 Lo T
=

' Target Control visionPROBE

J e

. s =
i Terminal: Connected To visionPRD = .
ER Mew I Activate I Save | Baselir ... | Delete | ak | Cancel | Config Hegsl
>BEIL-
>BEIM-ER

>BEIT-DC VER
Target = TRISCENDAT :Firwware = wpl.0l :NOEVENT :vwisionPROEE IT Rew 2 :TF Librarsy

»BEI- —
¥ x) hd
4] | »
| Connested Ta visionPROBE Over LPT1 | »BKM> |TARGET HALTED [

64

WaTriscend

Once this has been completed, your display should look like the following.

® visionCLICK. 7604 [tiscenda?_pri]
File Run/Step Trace /Break Toolz ‘window Help

|EeluBW /% BEQq=(==Fu |20 FfFCh SHROG=EDR & s D HE |

i Source M[=IE3 || :Watch [Manual Update] S] 3 | EER DA] [
0| M F LJ Ox | <« | Srope || -
;I ‘wiatch 1 | “wialch 2| ‘watch 3| Lucalsl i
G -
P
| BREAKPOINTS =[o] =]
| @ x =0 Be W
O SYMEOL I ERELAKFOINT TYFE I START A
0 | i
i/ Spmbol Explorer =]
| | EE
! Terminal: Connected To visionPROBE Over LPT1 [[=] ES
BR
>BEIL-
>BFI-ER
>BEM>DC VER
Target = TRISCENDAT :Firwware = wpl.0l :NOEVENT :vwisionPROEE IT Rew 2 :TF Librarsy
SEEI| |
¥ x) hd
4] | »
| Connested Ta visionPROBE Over LPT1 | »BKM> |TARGET HALTED [

One more configuration step is required at this point and need only be performed the first time that you
start visionCLICK after changing the project configuration information.

65

Building a Working Design Example Using the Triscend A7 Evaluation Board

Convert Object Modules

Before you can download the application using visionCLICK you need to convert the ram el f file into
the proprietary r am ab and r am bdx files required by visionCLICK. A utility program included with
visionCLICK performs this step. From the upper toolbar, select Tools - Convert Object Modules.
The following configuration window appears.

+ CONYERT BINARY AND SYMBOL OB.Js B

—Select Input Dbject Module To Convert
Ic:\ESTII'\estdema\TliScendﬁ?\MyFilstﬁ?\.SldF’art}l'\Diah\.main. Browse

— Chooze Output File Options
— Symbal File Canwert

¥ Create Symbol File For visionCLICE
Ic:'\ESTII'\estdemD'\Tliscendﬁ?'\MyFirsU—‘«?\ErdF’art}l'\DiaI:n‘\
C++ Demangling: € Am) GHU &% None

[

— Binar Downloadable Object Modules
¥ Create BD¥ File For BAM Download
Ic:'\ESTII'\estdemo'\Triscend&?’\MyFirst&?\BrdF’art}l'\Diab'\

[T Create Flat BIM File Far Flash Progranarming
I Range OFf Ox I ToOx |

[Compress The Downloadable Image -
0k

— Mizcellaneous Parameters
I Cancel |

EST Recommends Automatically Conwverting OB = [n *'our MAKE
File. Based On The Files And Optionz Selected Above, Invoke
COMYERT In the Build File Az Folloves:

[EAESTI N convert, exe

"eAESTINeztdemot T riscendd P kuyFirstd A 3rdPartysDiabsmain. el -c
"o AESTINestdemoh T riscendd M kuFirstd P 3rdPartyDiabbram.ab™ -b
"eAESTINestdemot T riscendd M kuFirstd A 3rdPartysDiabsram bds' -2

Edit the three pathnames to change them from MyDesignA7 to MyFirstA7. After you complete this edit,
the window should appear as shown.

Click Convert to create the symbol and downloadable files. The following DOS box window appears.

CONVERT.EXE V7.6A Copyright (c) 1996-2000 wind River HSI
convert ELF file ram.elf to CLICK file ram.ab
Extracting symbols from 'ram.elf'

Symbols written

Processing time: 0.160 seconds

convert ELF file ram.elf to BDX file ram.bdx
Extracting image from 'ram.elf'

writing binary download image to 'ram.bdx'
Maximum packet size: 0x100

Lower address: 0x0

Upper address: Oxffffffff

Execution address: 0xd1030000

Image written

Processing time: 0.060 seconds

press a key please

Press any key to close the DOS box window. To complete the convert process, click OK. If you check
the contents of your MyFirstA7 directory you should note that a number of files have been created.

66

WaTriscend

Download with visionCLICK

Being able to set software breakpoint is almost synonymous with source-level debugging. Setting
software breakpoint with a source level debugger is possible only when the software is executing out of
RAM. Therefore, we’ll switch to work the ram el f file, which has been built to run out of A7’s internal
SRAM.

The next part of the exercise is to download the RAM-based application to the Target board. Select
File > Reset, Load Target and Symbols, Set PC from the upper visionCLICK toolbar. VisionCLICK
reads the r am ab file containing the symbol information and downloads the r am bdx file to the target
board. Your visionCLICK screen will look like the following.

& visionCLICK 7.604 [tiiscenda?.pri] - Little Endian mode

File Run/Step Trace /Break Toolz ‘window Help

[CctuaW /v BQa===Fm@ [HLFC L

|sSHROE=EMER &S o |He

| Source: Viewing C:AESTII\estdemo\TriscendA7\MyFirstA7\3rdParty\Diab\init. s M= 3 || i Watch [Manual Update] =] | CERDAE =]
0| M [inis F [3 L[| Oxfoiosoo0 [« | Soope...[finit 5425 (D 1030000) -
1 Hode_ TSR EQU 0x10 Al ‘watch1 | “wialch 2| ‘wfatch 3| LUcaISI b
2 Mode IR0 EQU OxlZ2
3 Mode_35WC EQU Oxl3
4
5 I_Bit EQU OxE0
=] F_Bit EQU 40
7 i LDAD COMPLETE ! [x]
g8 PAM Limit EQU Oxd]
o IR0_Stack EQU RAM |Downloading T arget Image d
10 SVC_Stack EQU BAM | |=================c==mo=e=
11 TSR Stack EQU awc | |Initializing Download. E
1z - 7 |Download Port = LPT1 _I:
Loading To Target RAM: Biaz = None L4]
i FEMAP_ALIAS ENARLE EEG EOU DXC|G o CyESTINestdemal Triscend7sMyFitsid 7\ BrdPatyiDiat’
14 M35 _sDE_CTRL_REG EQ0 0xA) size S 1460 ‘white/Tead Yeriy is OFF [Fastest) I =
15 THIT_VALIE EqQu U |Download Complete : 295 Sec: (.36 KBytes Par Second
16 PLL_DIVIDER_MASK EQU 000 |Setting PC To &__begin = 0201030000 - [N)
17 S¥3_CLOCE_CONTROL_REG EQU Oxdl |4 3
1 | BREALEFOINT TYPE | sTarT &
19 - Lext Symbol Reading: 100 Complete points
z0 valign 4
2L
a2 EXFORT __begin Code: 100% Complete
23 EXPFORT __wectorend
24 begin: »
25] Reset Handler| _I _I
26 er o [=]
27 1
s =] m FAMAE MODULE MNAME SIEE LAST MOD:
23 _ﬂ—m 411 Modules| mffl.c 237 27
1] | = .‘E 411 Function:([flinic. s 2560 1/24/01
411 Globals
. 4z81 LAZ5701 ¢
! Terminal: Connected To visionPROBE Over LPT1 o =] 3 mmaln ¢ 28/
e ;I msxde.VSZ.c ez FEy
>BEI=-3R PC DLOZ0000
>BEM-DE
'INFO! - [msg82000] No software breakpoints installed
'INFO! - [msg82001] No internal hardware breakpoints installed
»BIIL-.dr PC; —
Dlozo0o0
=BEID- -
s " j P il 1 >
| | 3
| Target Halted At init.s / $a line 25 | »BEM> [TARGET HALTED [

Click the OK button to close the “Load” window. The RAM-based application has been loaded and is
ready to run. From this point, you can debug your application. In the following sections, you will
perform some basic visionCLICK debugging.

67

Building a Working Design Example Using the Triscend A7 Evaluation Board

visionCLICK debugging — Basics

Your display should now look like:

& vigionCLICK. 7.604 [triscenda?_prj] - Little Endian mode

File Run/Step Trace /Break Tools Window Help

|[EctuBW /e EQa=l=zFmE |2 HeF C

|SHROB=EDR & s [He |

1 Source: Viewing C:AESTII\estdemo\TriscendA7\MyFirstA7\3rdParty\Diab\init.s i Walch (Manual Update) =10 x M
ol W F |$a L |25 Dx ID1D3DDDD <- | Scope... Ilinit.sﬂ25 (01030000 -
1 Hode_TISR EQU 10 2 watek | swiatch 2] watch 3| Locals| -
2 Hode_IRN] EQU Ox1Z2
3 Hode_35WC EQU Ox13
a |
5 I_Eit EQU OxE0
a F Bit EQU Opxcd0
7
g RAN Limit EQU Oxdl03Z000 ; GKB SRAM
a IRQ_5tack EQU RAM Limit : IR0 stack at top o
1 SVC_Stack EQU RAM Limit-256 : followed by 3VC st
1L USR_Stack EQU SWC_%tack-256 ; followed by USR st G =
- oy
13 FEMAP_ALTAS ENAELE FEG EQU Oxdl010440 =
14 M55 _SDE_CTRL_FEG EQU Oxdl01000c
15 INIT_VALUE EQU 0x02710002 BHEAEROINDS =10 x]
16 PLL DIVIDER, MASK EQU Dx00000£EE “0 % ED BE R
17 ST5_CLOCE_CONTROL_REG EQU Oxdl010100
15 O SYMBOL I EREALEFPOINT TYPE I START A
19 L text Mo Breakpoints
20 Lcaligm 4
21
2z EXPORT _ begin
23 EXPORT __wectorend
z4 begin: F I I »
25 il Reset Handler| _I
Z6 Tdef: i Symbol Explorer =]
7 B Udet = MODULE NAME SIEE LAST MOD:
28 SWI .
20 B ST _J‘ : Hodules mffl.c 277 27y
4| | = _‘E 411 Fanction: |[f init. s 2560 1/24/01 |
411 Global=s
= = nain.c 4281 l/z5/01 ¢
i Terminal: Connected To visionPROBE Dver LPT1 =[O x m
=B ;I msxpdleZ.c 227 270
=BII-5R PC DLOZ0000
=BIIL-LE
'INFO! - [wsg8Z000] No software breaskpoints installed
'INFO! - [msgdZ00l] No internal hardware breakpoints installed
FBFIM-.dr PC; -
D1lo3oooo0
>BEIM-
. . j A il 1 2
.| 1 B
[Target Halted At irit.s / 3 line 25 | »BKM> |TARGET HALTED [

The program counter (PC) is pointing to the first instruction in the i ni t . s module. In the visionCLICK
project configuration window, the RESET Symbol was set to the address of __begi n.

In the visionCLICK toolbar, click the icon that looks like a “Traffic Light” (3). This starts your
application running. The 7-segment display should begin counting by two again.

68

WaTriscend

If you hit the icon the looks like a STOP Sign (@), the application stops. The source window indicates
which instruction will execute next when you resume the application. Most likely, the program will stop
inside the whi | e loop on the C_Ent r y function.

7:: vigionCLICK. 7_60A [triscenda?.prj] - Little Endian mode

File Run/Step Trace /Break Tool: Window Help

|[EctuBW /e EQa=l=zFmE |2 HeF C

|SHROB=EDR & s [He |

i'wWatch [Manual Update] 10O x M
ll M [Fnain.c F IE_Enlry L |141 Ox |D1nanann <-| 500!3'3---||main-°‘@\‘1*‘1 (01 030300) -

115+ MAIN FUNCTION |l wakeh | swiatch 2] watch 3| Locals| -
1139
1z0 i
121 woid C_Entry () {
laz
123 f4 initialize the A7's dedicated resources used in this
124 44 desimm
125 init (]:
lig
127 f4 initialize variables
128 TWORD (RESULT) = 0 G =
129 _'I_
130 4/ setup and start watchdog timer timer with interrupts o
ig; watchdogTiner (TIMER M3 I BREAKPDINTS (O]
133 // primary task waits until Watchdog Timer interrupt occurs “0 ¥ ED BE w
134 while (1] {
135 O SYMBOL I EREALEFPOINT TYPE I START A
136 Mo Breakpoints
137 *%% AN EMEEDDED APPLICATION NEVEER ENDS #¥%
138 wEE
139 wEE
L4n #
141 q | D
14z _I
143 h i Symbol Explorer =]
144 1
1a5 /% end main.c T/ MODULE NAME SIEE LAST MOD:
Bzcic 222 272
4| | = _‘E 411 Fanction: |[f init. s 2560 1/24/01 |
411 Global=s
= = nain.c 4281 l/z5/01 ¢
i Terminal: Connected To visionPROBE Dver LPT1 =[O x m
LT ;I msxpdleZ.c 222 222
'EREAK! - [megl2007] User forced halt; PC = OxD1030300
=BIIL-LE
'INFO! - [wsg8Z000] No software breaskpoints installed
'INFO! - [msgdZ00l] No internal hardware breakpoints installed
FBFIM-.dr PC; -
D1030300
>BEIM-
. . j A il 1 2
.| 1 B
[Target Haked At main.c / C_Enty ling 141 | >BKM> | TARGET HALTED [

If you do not see C source code, you probably did not properly configure visionCLICK.

69

Building a Working Design Example Using the Triscend A7 Evaluation Board

Editing from within visionCLICK

The next step is to modify the application. In the current version, the 7-segment display is incremented
by two each time that the watchdog timer interrupt is serviced. Edit the nmai n. ¢ module to restore the
original application. With the application halted in the C module, right click inside the Source Window
and select the Edit the Current Module option from the pop up window. The text editor you specified
in the Project Configuration window opens mai n. ¢ for editing.

a main.c - WordPad M=l 3

File Edit “iew |nzett Format Help

D2 2] sl 0w | B

f* MyFirscd7.c */

/*
b il e e e i e i e i i e O e e i el ol ol
* Mylbesigni?.c
¥ Copyright (C) 2000 Triscend Corporation

o o ol ol Ol Ol ol

=
gfinclude "MyFirsch7.h"

IE

o o ol ol ol el e e ol ol ol el ol ol ol
* DEFINITICHS

o i e e e e e e e e el e e il e el e e e e e e e e
*

#define XTAL FREQ 32763

#idefine RING _FEEQ zOoO0O0ODO

#define XCLE FREQ 25000000 // user wust define this freg
#define TIMER_ M3 500 /4 counter update interval in ms

id
Far Help, press F1 e

The examples in this tutorial assumes that you are using WordPad, however, any text editor will work
equally well. Scroll down until you locate the following line of code:

TWORD(RESULT) += 2;
Modify the increment value to 1.
TWORD(RESULT) += 1;

Save the file but do not exit from the editor.

70

MuTriscend

Recall that in the visionCLICK project configuration window there was an entry for Make/BAT file.
Create the following text file as shown and save it as Makeal | . bat . This batch file enables you to
rebuild the application from within visionCLICK.

make cl ean
make
d:\estiil\convert —w “ramelf” —c “ramab” -b “ram bdx” -z

The file should include the statements shown in the above example. After entering these three lines,
save the file as Makeal | . bat . Make sure that you save it in the correct directory.

c:\estii\estdenmo\ Tri scendA7\ MyFi r st A7\ 3rdPart y\ Di ab

The example assumes that you installed visionCLICK in the default directory. If you installed
visionCLICK in another location, use the necessary pathname.

A full pathname to the convert . exe utility is highly recommended as there may be other

convert . exe programs installed on your computer. Running the wrong convert . exe could cause
your system to crash. The FastChip convert . exe utility converts the ram el f file into visionCLICK
symbol and downloadable files.

Now rebuild the application. From the toolbar, select Tools > Compile/Make Project. A DOS box
command window appears allowing you to monitor the progress of the build. Press any key to
terminate the build process.

The next step is to download the changed application. From the toolbar, select File > Reset, Load
Target and Symbols, Set PC. When the download is completed, click OK in the download dialog box.
Start the application running by clicking the Go icon (the traffic light). If you were successful, the 7-
segment display should start incrementing by one.

71

Building a Working Design Example Using the Triscend A7 Evaluation Board

Breakpoints in visionCLICK

You built the application to execute code from internal SRAM so that you could set software
breakpoints. The current application example is very simple. By alternately clicking Stop and Go, you
will almost always stop on the same instruction in the whi | e(1) | oop.

& visionCLICK 7.604 [tiiscenda?.pri] - Little Endian mode

File Run/Step Trace /Break Toolz ‘window Help

[CctuaW /v BQa===Fm@ [HLFC L

|SHROB=EER & DB H |

i Source: Yiewing C:AESTIAestdemoA T riscendA7\MyFirstA7\3rdParty\Diab\main.c M=l g3 || :Watch [Manual Update]] 3| {CE R DAy] =
0 M |mainc F IC_Enlr_l,l L |142 Ox |D1030304 SC&"main cit142 [D1030304] N
115 * MATN FUNCTION Al watch1 | ‘wialch 2| ‘watch 3| LUcaISI b
119
1z0 s
121 woid C_Entry () {
122
123 £/ initialize the 47's dedicated resources used in this
1z4 F4 desigm
lzs init (]2
126
127 /4 initialize wvariahles
128 TWORD (RESULT) = 0; G —
129 LI_
130 /7 setup and start watchdog timer timer with interrupts =
igé watchdogTiner (TIMER_MS) . BREAKPDINTS (ol
133 // primary task waits until Watchdog Timer interrupt occurs “@ ¥ ED BE w
1534 while (1] {
135 O SYMEOL I ERELAKFOINT TYFE I START A
136 Mo Breakpoints
137 ***% AN EMEEDDED AFPLICATION NEVEER ENLG ***
138 FEE L. e
139 W Add your application code here! waw
140 /
141 see_result = TWORD (RESULT) : ‘I I _,I
1z [
14z} i/ Spmbol Explorer =]
144 .
145 7% end main.c */ = RAM.AE MODULE MNAME SIEE LAST MOD:
_ﬂ—m 411 Modules| mffl.c 237 27
4] | V- .‘E 411 Function:([flinic. s 2560 1/24/01 |
411 Globals
= = nain.c 4z81 LAZ5701 |
! Terminal: Connected To visionPROBE Over LPT1 o =] 3 m
RN ;I msxde.VSZ.c 7?7 227
'BREAK! - [msglZ007] User forced halt; PC = OxD10O30304
>BEM-DE
'INFO! - [msg82000] No software breakpoints installed
'INFO! - [msg82001] No internal hardware breakpoints installed
»BIIL-.dr PC; —
01030304
>BHIM- :I
s " A || il 1 >
| | 3
| Target Halted At main.c / C_Enty lins 142 | »BKM> |TARGET HALTED [

The only indication that the application is executing is that the 7-segment display is changing. Beyond
the simple whi | e loop, there is another significant part of the application. The Watchdog Timer
generates a periodic interrupt. Each time that an interrupt occurs, program control passes from the
whi | e loop to the Interrupt Service Routine (ISR). Recall that there are two parts to the ISR, the

| RQ_W apper —which is written in assembler and contained in the i ni t . s module—and the

| RQ_Handl er, which is written in C and located in nai n. c. Set a breakpoint to observe that the
interrupt is actually working. For this exercise, set the breakpoint on the first instruction of the

| RQ_W apper code.

72

WaTriscend

First stop the application by click the Stop icon. Next, locate the “M” button at the top of the
visionCLICK source window. In this case, “M” stand for module. Click this button to open a module
window.

1sionCLICK, 7.60A [triscenda? prj] - Little Endian mode

File Run/Step Trace /Break Tools Window Help

|[EctuBW /e EQa=l=zFmE |2 HeF C

| Source: Viewing C:AESTIIvestdemo\TriscendA7\MyFirstA7\3rdP arty\Diab\main.c i Walch [Manual Update) =] B3 M
ll :Imainc F IE_Enlry L |142 0x |D1030304 <-| Scope---||main.cﬂ142 (01030304) -

118 % MAIN FUNCTION ;I Wiatch 1 | ‘watch 2| ‘Watch 3| Localsl =

118

120wy

151 remidn Teeme ih

122 1MODULES 9= E3
i;i w f B , EI |ted resources used in this
125
lig

I
127 ﬂ E init.s
i:g ﬂ nain.c G
»

130 imer timer with interrupts —I_’
igé {BREAKPOINTS _Olx]
133 htchdog Timer interrupt OCCUrs “0 ¥ ED BE w
134
133 ON SYMEOL | BRELAKPOINT TYPE | sTarT 2
136 e] No Breakpoints

137 [I0N NEVER ENDZ *#*%
13 . . wEE
139 wEE Add your application code here! wEE
L4n #

141 see_result = TWORD (RESULT) ; Pl I I _>|

laz

143 h i Symbol Explorer =]
144

145 /% end main.oc T/ = FAM.AE MODULE NAME SIEE LAST MOD:

_ﬂ»m 411 Modules| m ffl.c 27 277

1] [v= .‘E 411 FPunction: | [Mlinic.s 2560 1724701

411 Global=s

= [oL Lz
LT ;I msxpdleZ.c 222 222
'EREAK! - [msgl2007] User forced halt; PC = OxD1030304
=BIIL-LE

'INFO! - [wsg8Z000] No software breaskpoints installed

'INFO! - [msgdZ00l] No internal hardware breakpoints installed
FBFIM-.dr PC; -
01030304

BEIT-
>. . j A il 1 2
.| 1 B

| Target Halted &t main.c / C_Entry line 142 | »BKM> | TARGET HALTED [

|SHROB=EDR & s [He |

There are two modules in this application —i ni t . s and mai n. c. Double click on the file named
i nit.s. The source code for the i ni t. s module appears in the source window. Close the Modules
Window.

73

Building a Working Design Example Using the Triscend A7 Evaluation Board

Scroll down until you find the start of the | RQ_W apper code (line 55). Double click on line 55. An “SB”
(Software Breakpoint) icon appears immediately to the left of line 57. VisionCLICK sets the breakpoint

at the first executable code address.

7:: vigionCLICK. 7_60A [triscenda?.prj] - Little Endian mode

File Run/Step Trace /Break Tools Window Help

|[EctuBW /e EQa=l=zFmE |2 HeF C

|SHROB=EDR & s [He |

i'Waltch [Manual Update] = =] S =] =
O Miis F [3a L[55 | oxfoiccooss - | | Scope... |[main.c#142 [DT030304] IE
37 LDE PC, IRQ_Wrapper Addr ;I Wiatch 1 | ‘watch 2| ‘Watch 3| Localsl =
38 FIO:
k] E FIQ
an
41 .ascil "Copyright (C) 2000, Triscend Corp.'™
4z
43 LLext
44 .align 4
45
a6 IR0_Wrapper_hddr:
a7 DC.L IRQ_Wrapper J G =
4as
49 H _.I_’
B et e e onine o maire o | BREAkPOINTS __________________________ M[=IE]
sl ; branches to the 'C' routine to handle the JHHEAKRUINTS =101
5z ; interrupt. “0 % ED BE R
gi iI‘IPURT IRQ_Handler O SYMBOL I EREALEFPOINT TYPE I START A
55 I;[RU_Hrapper: Einit.s#S? Software Code Breakpoint OxD1030
56
E 57 STMDE SP!,IRO-IP, LR} : Store all of the registers
58 EL IR(]_Handler ; call the C ISR
5o LDMI& SP!,{RO-IP, LR} : restore the registers
a0 SUBS PC,LE, #4 ; return from the interrupt ‘I I _,I
al _ wectorend:
63 H 1
64 : Alias the internal and external SDRAM to Ox00000000 = RO HEtiE pLCE L TR0
[: _‘!‘J‘ mffl.c rry e
1] | Dk _‘E 411 Fanction: |[f init. s 2560 1724701 |
411 Global=s
i Terminal: Connected To visionPROBE Dver LPT1 =[O x mmaln. © 4281 Lr25/01
“EEI. dr PC: ;I msxpdleZ.c 222 227
01030304
=BIIL-5B DLO30054 /&
FBEIL-DE
Software Code Breakpoints
1. DLl0O30054 count = 0001 actual = 0000 enabled —
'INFO! - [m3gfZ00l] No internal hardware breakpoints installed
BEI> j -
. P =T i
<] 1 H

|Target Halted At main.c / C_Entry line 142 | >BEM>

| TRGET HALTED [

74

WaTriscend

Click Go to start the application running. Execution stops when the interrupt occurs and begins the
service routine.

& visionCLICK 7.604 [tiiscenda? pri] - Little Endian mode

File Run/Step Trace /Break Toolz ‘window Help

[CctuaW /v BQa===Fm@ [HLFC L

|SHROB=EER & DB H |

i Source: Yiewing C:AESTIAestdemoA T riscendA7\MyFirstA7\3rdParty\Diab\main.c M=l g3 || :Watch [Manual Update]] 3| {CE R DAy] =
0| M [inis F [3 L [57 | 0x Jo1030054 Seape [t s#57 (0103004] |
37 LDE. PC, IRQ Wrapper_addr | waen1 | wiatch2| watch3] Locals| -
38 FIO:
39)il FIQ
4an
41 .ascii "Copyright (C) 2000, Triscehd Corp.™
4z
a3 .text
44 valigm 4
45
46 IRQ_Wrapper_dddr:
a7 DC.L IRQ_Wrapper J G =
4d
*
2 : op
&0 ; IR0 Urapper saves all of the registers and
51 : branches to the 'C' routine to handle the ABHERRGOINLS !Eﬁ
&z ; interrupt. “@ ¥ ED BE w
53 ;
ca INPORT IR Hendler ON SYMBOL | EREAKFOINT TYPE | sTarT &
E5 IR0_Wrapper: Einit.s#S? Goftware Code Breakpoint OxD1030
56
il 57 STMDE SP!',{RO-IF, LR} =) all of the registers
58 EL IR0_Handler : call the C ISR
59 LDMIA SB!,{RO-IF, LE} : restore the registers
&0 SUBS PC,LE,#4 : return from the interrupt ‘I I _,I
6l _ wectorend:
62 Rezet Handler: i Spmbol Explorer =]
63 H 1
54 ; Alias the internal and external SDRAM to 0x00000000 DAL AE HODUEERNANE SLZn LA T@MOD)
55 : _ﬂ—m 411 Modules| mffl.c 237 27
4] | V- .‘E 411 Function:([flinic. s 2560 1/24/01 |
[E]| 411 Globals
= = nain.c 4z81 LAZ5701 |
! Terminal: Connected To visionPROBE Over LPT1 o =] 3 m
Software Code Breakpoints ;I msxde.VSZ.c [Pz
1. DL030054 count = 0001 actual = 0000 enabled
'INFO! - [msg32001] No internal hardware breskpoints installed
FBEI-GO
=R
'EREAK! - [msgl2000] Software breakpoint; PC = OxD1030054 —
=BEID-
>BHIM- :I
s " A || il 1 >
| | 3
| Target Halted At init.s / $a line 57 | »BEM> [TARGET HALTED [

The highlighted line indicates which line of code will execute when the application resumes. Locate the

step instruction icon (*=) and click it to step through the code. On the second step, your program
branches to the | RQ Handl er inmai n. c.

Locate the visionCLICK Breakpoint window and see that there is now one entry in the table.

There are a number of ways to clear the interrupt. Run the application until you once again stop at the
breakpoint. Double click the SB icon. Note also that the entry in the Breakpoint Window disappears as
well as the SB icon. You can also clear the breakpoint from the Breakpoint Window. First Reset the
Breakpoint. Right click on the entry in the Breakpoint window. The first option in the pop-up window
provides another way to remove the breakpoint. Note that the SB icon is cleared as well.

75

Building a Working Design Example Using the Triscend A7 Evaluation Board

Watching Variables

Earlier in this exercise, you added the see_r esul t variable to the C_Entry function. You can monitor
or watch the value of see_r esul t change with visionCLICK. Whenever RESULT increments, the
value of see_r esul t also changes.

To watch this variable, do the following. First, stop the application. Double click on the name
see_resul t inthe source code and while holding down the left mouse button, drag it to the Watch
window.

& vigionCLICK. 7.604 [triscenda?_prj] - Little Endian mode

File Run/Step Trace /Break Tool: Window Help

|[EctuBW /e EQa=l=zFmE |2 HeF C

|SHROB=EDR & s [He |

: Source: Yiewing C:AESTIl\estdemo\TriscendA7\MyFirstA7A3rdParty\DiabAmain.c i Walch (Semi-Auto Update) =101 % E$
0| M [mainc F IE_Enlry L |141 Ox |D1nanann <-| 500!3'3---||main-°‘@\‘1*‘1 (01 030300) o
118 % MAIN FUNCTION ;I Wiatch 1 | ‘watch 2| ‘Watch 3| Localsl B
1139 . _
120 *y {unsigned int) see_result at OxD1OZ0EEC = 10 (Oxd)
121 woid C_Entry () {
laz
123 f4 initialize the A7's dedicated resources used in this
124 44 desimm
125 init (]:
lig
127 f4 initialize variables
128 TWORD (RESULT) = 0 5
129 r
130 4/ setup and start watchdog timer timer with interrupts &
ig; watchdogTiner (TIMER M3 I BREAKPDINTS (O]
133 // primary task waits until Watchdog Timer interrupt occurs “0 ¥ ED BE w
134 while (1] {
135 O SYMBOL I EREALEFPOINT TYPE I START A
136 Mo Breakpoints
137 *%% AN EMEEDDED APPLICATION NEVEER ENDS #¥%
138 wEE L L. ... wEE
139 wEE Add your application code here! wEE
L4n #
141 q | D
14z _I
143 i Symbol Explorer =]
144 1
1a5 /% end main.c T/ - MODULE NAME SIEE LAST MOD:
odulesilll W FZSNE 222 272
4| | = _‘E 411 Fanction: |[f init. s 2560 1/24/01 |
411 Global=s
= = nain.c 4281 lsz5/01 |
i Terminal: Connected To visionPROBE Dver LPT1 =[O x m
=BIIL-DE ;I m sxpdivid.c 227 270
'INFO! - [weg82000] No software breakpoints installed
'INFO! - [wsg82001] No internal hardware breakpoints installed
FBEIL-. dr PC;
10303500
BRI, dob DLO305SC 4; -
0& 00 00O 00
>BEIM-
. . j A il 1 2
.| 1 B
| Target Halted At: main.c £ C_Entry line 141 | »BKM> |TARGET HALTED [

VisionCLICK displays the current value of the variable see_r esul t, which should also be the value
shown on the 7-segment display. In the example shown above, the current value is 10 or OxA.

76

WaTriscend

Start the application running. Note that the value in the Watch window does not change. A watched
value is only updated when you stop the application. Right click in the Watch window. There are
options that allow you to control visionCLICK’s update behavior. The default setting is Update
Manually Only. When you start and stop the application, the value displayed in the Watch Window will
not change. Change the setting to Update after Breakpoints/Events/User Halts.

& vigionCLICK. 7.604 [triscenda?_prj] - Little Endian mode
File Run/Step Trace /Break Tool: Window Help

Sl uBW /% EOw===Fa 2t eBCh SHROD DR & D [He [

. Source: Viewing C:AES TIvestdemo TriscendA 7AMyFirstA 74 3rdPartyAD iab\main. c i Walch [Semi-Auto Update) =01 E;
0| [M [mainc F [C_Enmy L [rar | oxfoiocmn - | m"main-cm*ﬂ [01020300) o
118 % MAIN FUNCTION ;I Wiatch 1 | ‘watch 2| ‘Watch 3| Localsl B
1139 . _
120 ® {unsigned int) see_result at OxD1OZ0EEC = 10 (Oxd)
121 woid C_Entry () {
laz
123 f4 initialize the A7's dedicated resources used in this Add & wiatch ltem
Lea /4 desion Set Selected Item's Yalue
125 init (]:
126 Femove Selected ltem
127 7/ initialize variables Fiemove All ltems On This Tab
128 TWORD (RESULT) = 0 o
1z3 Display Pointer &g Aray... r
130 /4 setup and start watchdog timer timer with interrupts ————————————— Add Global Yariables 3 “
ig; watchdogTimer (TIMER M) : I BREAKPDINTS Cast Selected Item To Mew Type 9 [=] E3
133 // primary task waits until Watchdog Tiwer interrupt ocours H@ ¥ ED BE H Specify Item's Display Options .. 3
134 while (1] { Update Manually Only S h Update and i 2 START L
133 v Update After Break points/E ! " o
Lan Update Always [Above Plus Steppi SR PEBTES '
137 *%% AN EMEEDDED APPLICATION NEVEER ENDS #¥% D. . 4 - 8
13 wE . Periodic Update [Snapshots Yhen Running)
139 wEE Add your application code here! wEE Update Now [ESC Key)
L4n £
141 see result = TWORD (RESULT) ; Specify New ‘Watch Log File.. I _>|
l4z Delete [Clear) Watch Log File
e Edit Watch Log Fie =10]>
145 A% end main.oc T/ Enable Data Logging HlEInE DT SLZh LASTRMOD]
Dizable Data Lagging - mffl.c 7ee Fre_l
q [=] _Em rrrmrerion: ([init. s 2560 1/24/01 |
[#]] 211 Globals
= = nain.c 4251 L/a5/01 .
i Terminal: Connected To visionPROBE Dver LPT1 =[Ol] m
EIM-DE ;I m sxpdivid.c 222 222
'INFO! - [weg82000] No software breakpoints installed
'INFO! - [wsg82001] No internal hardware breakpoints installed
FBEIL-. dr PC;
10303500
BRI, dob DLO305SC 4;
0& 00 00O 00
>BEIM-
. . j A Ll 1 2
< ! : B

| Target Halted At main.c 7 C_Entry line 141 | »BKM> | TARGET HALTED [

Now run and stop the application. You should note that each time the application halts that the value
associated with the see_result is updated.

Part 2 Complete!

Congratulations on completing Part 2 of the tutorial!

At this point, you created and compiled an application program for the A7’'s embedded ARM7TDMI
RISC processor. Then, you used the visionPROBE JTAG download/debug cable with the visionCLICK
source-level debugger to control and monitor your application program operating in real-time on the A7
Evaluation Board.

77

Building a Working Design Example Using the Triscend A7 Evaluation Board

PART 3: The FastChip Command-Line Interface

All functions in the FastChip's Graphical User Interface (GUI) are also available through the FastChip
command line interface. All FastChip commands are accessible through csoc. exe found in the

<Fast Chi p Installation Directory>\bin directory. Most of the Triscend supported third-party
design tools also include command-line or batch-file interfaces.

Graphical and command line FastChip interfaces are useful for different kinds of design activities. The
graphical interface is useful for tasks performed rarely, such as entering a design, instantiating and
parameterizing a soft module library, connecting modules, etc. The command interface, by contrast, is
useful for RTL design flow, and automating repetitive tasks.

The power of the command line is truly unleashed when you chain multiple commands together in a
script file. With scripts—such as DOS batch script, shell script, perl script or makefile—repetitive tasks
become manageabile, if not automatic.

A script can generate headers, compile C code, and link the microprocessor code. A script can also
run logic synthesis tools on an RTL design, import the result into FastChip, bind, export and verify the
resulting design against a simulation test bench. Likewise, a script combine the microprocessor code
with the CSL configuration file and download the result to the CSoC under test. Finally, a script can
perform in-circuit debugging of your hardware and software design as part of your regression suite to
ensure your application still functions correctly after a design iteration.

Unlike other scripting solutions, make files provide the capability to specify dependency between
different files. It is very convenient to rerun only the changed portion of your design once the
dependency is setup correctly.

Triscend FastChip ships with a number of demonstration projects with makefiles included. Makefiles
are commonly used during software development, particularly by command-line tool users. However,
there are many similar but not mutually compatible makefile tools available. Triscend chooses GNU
make as the reference standard for the project makefiles.

GNU make is part of the popular GNU free software available on many operating system platforms,
including many variants of UNIX and Microsoft Windows. The GNU tools are available from GNU's
web site at http://www.gnu.org. The Cygwin tools are ports of the popular GNU development tools and
utilities for Windows 95, 98, 2000 and NT (http://sources.redhat.com/cygwin).

You only need to install a very small subset of the cygwin tools in order to use the bundled makefiles.
For your convenience, we have selected that subset and put it in the directory

Thi r dPar t y\ Redhat \ cygwi n\ bi n. We recommend you copy the entire \ cygwi n directory and its
\ bi n sub-directory to C:\ on your hard disk. Also, add "C:\cygwin\bin" to your Windows PATH
environment variable.

To comply with the GPL license, Triscend re-distributes the unmodified binary and source files on the
FastChip CD-ROM under the Thi r dpart y\ Redhat\ cygwi n_i nst al | directory. The complete
Cygwin package can be installed by running "setup.exe" directly from that directory on the CD-ROM. If
you have previously installed "cygwin\bin", you do NOT need to run "setup.exe".

Windows PCs running the McAfee anti-virus software may generate warning or error messages on
some of the .tar.gz files if you attempt to copy the cygwin_install directory from the CD-ROM to your
hard disk. Apparently, the anti-virus software is cautious about a non-Windows-native compression
format it doesn't quite understand. Turn off checking on compressed files to proceed with copying if
desired.

The third portion of the tutorial assumes that you are a fairly advanced PC user. You need to be
comfortable using the MS-DOS command shell and DOS batch files.

In this exercise, you will add some functionality to the source code and change the design. You will
use the command line interface to compile, link, bind and download the code into the TA7S20.
Portions of the project are performed using the GUI for convenience.

78

http://www.gnu.org/
http://sources.redhat.com/cygwin

MuTriscend

DOS Environment Variable

To use the FastChip command line, the Fast Chi p\ bi n directory must be in your executable search
path. FastChip automatically sets this environment variable for you during installation. In order to
compile and link application, the Di ab\ 4. 4a\ W n32\ bi n directory must also be in your search path.
Again, Diab should have set this path variable during the installation. You can double check this
variable by typing ...

set path

... in DOS command window. Make sure that the Fast Chi p\ bi n directory appears somewhere in the
search path.

You can also type ...
csoc

... and see if the csoc general help message is displayed:
c:\>CsocC

csoc -- Triscend FastChip command line program

csoc [options] commandName [commandArguments]

Run the given csoc command. Recognized commands are listed below.

Use 'csoc help <commandName>' or 'csoc man <commandName>' for
information on each command.

Use 'csoc man csoc' for details.

help Show brief help for a command

Show the manuaq page for a command

Show FastChip ID on local machine.

Convert a FastChip 1999 project

Create a project

Import a module type into a project

Export a simulation model

Bind logic elements to CSL resources of CSoC
Generate source code

List Triscend CSoC parts supported

List memory parts sup?orted

configure an image file for download
pownload to CSoC and memory devices

Debug CSoC

Generate a project report

List module 1ibrary information

Show Tjr file information

migrate99
create
import
export
bind
enerate
istdev
Tistmem
config
download
debug
report
11 stmod
tjr

To verify that the proper version of the Diab tools are installed correctly and the search path is correct
you can type ...

dcc -V
... in the command window.
The following information should be displayed.

Microsoft(R) windows 98
(C©)Copyright Microsoft Corp 1981-1999.

c:\winoows>dcc -V

C:\DIAB\4.4A\WIN32\BIN\DCC.EXE Rel 4.4 Rev a
Cop¥right 1986-2000 wind River Systems, Inc.

build date and time: Oct 26 2000 14:09:34
Table: ARM Rel. 4.4a

79

Building a Working Design Example Using the Triscend A7 Evaluation Board

If the search path is not setup properly, you can set it yourself by typing:
set PATH=<Fast Chip install dir>\bin; %ATH%

FastChip Makefile/Batch File

A Makefile is provided in the Fast Chi p\ pr oj ect s\ MyDesi gnA7 directory. You can modify this file
to use any of the various csoc commands available from the command line interface. In fact, you must
make some minor edits to use this file with other projects.

This section of the Tutorial examines the Makefile organization and describes the necessary changes
to use it with the MyFirstA7 project.

First, copy the Fast Chi p\ pr oj ect s\ MyDesi gnA7\ nakef i | e into your MyFristA7 project directory.
Makefile Header

In the header section of the Makefile, the project name should be changed to MyFirstA7. This is
optional change. The reference to a project could just as easily be deleted.

Triscend sanple nakefile for denp design: MFirstA7
#
Copyright (c) 2000 Triscend Corporation. All right reserved.

Makefile Variables

The variables section of the makefile descibes the hardware configuration of your target hardware and
specifies the included application components. The hardware configuration information includes such
items as the CSoC Flash, SRAM, and SDRAM device part names. These values are correct for the
Triscend A7 Evaluation Board. If you use the default hardware configuration, you do not need to make
any changes to these entries.

The DESIGN_NAME entry needs to be modified to reflect the correct project name. For this tutorial
change MyDesignA7 to MyFirstA7. This setting is used in the Makefile rules to specify a pathname to
the application source directory and is therefore a required change.

For the purpose of this Tutorial, no other software reference changes will be required.

Vari abl es

H H H

You shoul d custonize the followi ng variables to your environment and project
DESI GN_NAMVE=M/Fi r st A7

USER_CODE=nai n

CSOC_NAME=TA7S20- ESQ
FLASH_PART_NAME=AM29LV004B- 120
SRAMECYML851V33- 20

SDRAMEDI MMLOO- 08MB32- 662 # == MI8LSDT864HG 662
| MPORTED _MODULE=hear t beat

EDI F_DI R=3r dParty/ EDA

SW DI R=3rdParty/ Di ab

RMErm - f

DESI GN_FI LES=$(DESI GN_NAME) . f cp $(DESI GN_NAME) . n | nport edFor $(DESI GN_NAME) / *. n
CONSTRAI NTS=$(DESI GN_NAME) . i oc $(DESI GN_NAME) . adc $(DESI GN_NAME) . ti ¢

80

MuTriscend

Makefile Rules
Target

4y
H

Targets

H
T+

build is the default target if you just type nake
build: inport generate code csl

Call the EDA nakefile to see if it needs to be reconpiled
i mport:

| f the dependency check fails, generates the project header and source file
for the Keil project
generate: $(SWDI R)/$(DESI GN_NAME) . h

Call the ARMDi ab Project nakefile to see if it needs to be reconpil ed
code:
@(MAKE) -C $(SwWD R

| f the dependency check fails, bind the CSL design and produce a project
report
csl: $(DESI GN_NAME) . csl

Make and Download Options

There are three download options available in the default Makefile: Di r ect , Fl ash, and SRAM In all
three cases, two separate csoc commands are used: conf i g and downl oad. The make direct
option uses the current binder file and downloads directly to the CSL configuration memory. The
application code is download to the internal SRAM.

The make flash option builds the application and downloads both the CSL and application code to
Flash Memory. The make SRAM option is similar to make flash except that it downloads CSL and
application code to an external SRAM added to your board. By default, the A7 Evaluation Board is
shipped from Triscend without any external SRAM. To use the make SRAM option, you must add an
SRAM module and modify several of the default switch settings, described in the Triscend A7
Evaluation Board User Manual, under Fast Chi p\ Docs.

81

Building a Working Design Example Using the Triscend A7 Evaluation Board

Short Hand Targets

These targets execute unconditionally, regardl ess of whether the project
files are up-to-date.

H o HH R

Take the current binder output and directly programthe CSoC
direct: DIRECT. cfg directp

#DI RECT. cf g: $(DESI GN_NAME) . csl $(SW DI R)/ $(USER_CODE) . hex
Dl RECT. cf g:
csoc config -code $(SWDI R)/$(USER _CODE) . hex \
-csl $(DESI GN_NAME) . csl -dev $(CSOC_NAME) -nem NONE \
-cl k xtal 32K: 20M -swt 5 \
-out DI RECT. cfg

Reprogramusing the current image file DI RECT. cfg
directp::
csoc downl oad DI RECT. cfg -pgm

Take the current binder output and programthe flash nenory
flash: FLASH.cfg flashp

#FLASH. cf g: $(DESI GN_NAVE) . csl $(SW DI R) / $(USER_CODE) . hex
FLASH. cf g:
csoc config -clk ring -code $(SWDI R)/$(USER _CODE) . hex \
-csl $(DESI GN_NAME) . csl -dev $(CSOC_NAME) -nem $(FLASH PART_NANME)

-miu 512K: 8 -sdmiu 32M 32:1 -sdram $(SDRAM \
-out FLASH. cfg

Reprogramusing the current inmage file FLASH. cfg
flashp::
csoc downl oad FLASH. cfg -pgm

Take the current binder output and programthe external SRAM
sram SRAM cfg sranp

#SRAM cf g: $(DESI GN_NAVE) . csl $(SW DI R) / $(USER_CODE) . hex
SRAM cf g:
csoc config -clk ring -code $(SWDI R)/$(USER _CODE) . hex \
-csl $(DESI GN_NAME) . csl -dev $(CSOC_NAME) -nmem $(SRAM \
-mu 4M 32 -sdmu 32M 32: 1 -sdram $(SDRAM \
-out SRAM cfg

Reprogramusing the current inmage file SRAM cfg
sranp: :
csoc downl oad SRAM cfg -pgm

Performin-system debuggi ng by reading back the Result Register in CSL and
the Watchdog tiner control SFR register
observer::

csoc debug getreg Result -xref $(DESI GN_NAME). xr ef

GCenerate a project report file
report::
csoc report $(DESI GN_NAME). fcp

82

MuTriscend

Make Clean

This option scours the project directory by removing everything except for the source files. See the
Getting Started Manual for details on how to install the necessary GNU commands such as rm

Remove all except the source files
Since the DOS del command errors out if file does not work
It is recormended that your call the clean target using
nmake -i to ignore the file mssing error
cl ean: :

$(RM $(DESI GN_NAVE). m

$(RM) $(DESI GN_NAME) . al

$(RM $(DESI GN_NAME) . p

$(RM) $(DESI GN_NAME) . pm

$(RVM $(DESI GN_NAME) . pad

$(RM) $(DESI GN_NAME) . r pt

$(RM $(DESI GN_NAME) . bn

$(RM) $(DESI GN_NAME) . b

$(RV $(DESI GN_NAME) . br

$(RM) $(DESI GN_NAME) . ht m

$(RM DI RECT. cfg

$(RM) FLASH. cfg

$(RM SRAM cfg

Exercises

In the next part of the tutorial, you will use several command line rules. First open a DOS box
command window and change directory to point to your Fast Chi p\ pr oj ect s\ MyFi r st A7 directory.
If you have not already done so, copy the makef i | e from the MyDesignA7 project. Use a text editor
to change all references in that file from MyDesignA7 to MyFirstA7.

You should also be connected to the A7 Evaluation Board using the visionPROBE cable. Make sure
that the visionCLICK software is not currently running. Both the board and the visionPROBE should be
powered.

In this exercise we are going to use two of the three short-hand target rules: Direct and Flash. From
the command line, enter the command ...

make fl ash

83

Building a Working Design Example Using the Triscend A7 Evaluation Board

C:\Program Files\Triscend\FASTCHIP\Projects\MyFi rsta7-make flash
csoc config -clk ring -code 3rdParty/Diab/main.hex \
-cs1 MyFirstA7.cs1 -dev TA7S20-ESQ -mem AM29LV004B-120 \
-miu 512K:8 -sdmiu 32M:32:1 -sdram DIMM100-08M32-662 A
-out FLASH.cfg
Read csL file.
Read code file(s).
write configuration image file 'FLASH.cfg'
write configuration report file
csoc download FLASH.cfg -pgm
Begin at Tue Feb 06 14:18:17 PST 2001
Download to 'AM29LV004B-120' via 'TA7S20-ESQ'
Read configuration image file 'FLASH.cfg'
skip check id for TA7 for now
Reset and halt CSocC.
MCU halted. MCU 1in reset.
pownload Flash programming algorithm to CSocC.
Configure CSoC to run programming algorithm.
Reset and run CPU.
CSoC running.
total progress = 1.0%
Erase Flash memory ...
total progress = 15.0%
Program Flash with configuration image ...
total progress = 16.3%
total progress = 18.2%
total progress = 20.2%

total progress = 97.3%
total progress = 99.2%
total progress = 100.0%
Reset and run CSoC.
MCU halted. MCU in reset.
CSoC running.
CSoC running.
total progress = 100.0%
End at Tue Feb 06 14:24:04 PST 2001

You should see various commands execute from the script.

The first command executed is csoc confi g. This command uses information in the variables
section of the makefile to generate a f | ash. cf g file. You will recall that a .cfg file is an Intel Hex file
with a short header prepended to the top of the file. Once the .cfg file is created, the MCU is halted a
Flash programming algorithm is downloaded to CSoC device. Then the Flash memory device is
programmed from your computer over the JTAG cable.

The Flash programming algorithm used is based on the FLASH_PART_NAME specified in the
Makefile. Once the programming is complete, the CSoC device is reset and the application begins
executing from Flash and the 7-Segment display should increment.

In a previous section of the Tutorial, you modified the mai n. ¢ module so that the LED display would
increment by two. Now change the application so that the LED increments by three. Using a text
editor, open the nai n. c file for editing. Locate and modify the following line of C code.

TWORD(RESULT) += 3;

84

MuTriscend

Save the file and exit the editor. From the DOS window, enter the following command.
make code

C:\Program Files\Triscend\FASTCHIP\Projects\MyFi rsta7>make code
MAKE.EXE[1]: Entering directory "C:/Program Files/Triscend/FASTCHIP/Projects/MyF
irstA7/3rdParty/Diab

d1d -tARMLS:simple -0 main.elf init.o main.o main.dld -1c -m2 > main.map
ddump -Rv main.elf -0 main.s32

mhc -h main.s32 main.hex

mhc verl.0.3 Motorola S data <-> Intel Hex data Converter.

(©)1997-1998 Cow Project workshop.

Convert flag -h

Input file main.s32

output file main.hex

Making Intel Hex file.

Input file size=3954

output file size=0

Finished!

MAKE.EXE[1]: Leaving directory "C:/Program Files/Triscend/FASTCHIP/Projects/MyFi
rstA7/3rdParty/Diab’

You are using another option in the Makefile. Now, rebuild the entire application by entering the
following command.

make direct
You will see the following information in your command window.

C:\Program Files\Triscend\FASTCHIP\Projects\MyFi rsta7>make direct
csoc config -code 3rdParty/Diab/main.hex \
-cs1 MyFirstA7.cs1 -dev TA7S20-ESQ -mem NONE \
-clk xtal32K:20M -swt 5 \
-out DIRECT.cfg
Read csL file.
Read code file(s).
write configuration image file 'DIRECT.cfg'
Write configuration report file
csoc download DIRECT.cfg -pgm
Begin at Tue Feb 06 14:26:50 PST 2001
pownload to internal RAM of 'TA7S20-ESQ' ...
Read configuration image file 'DIRECT.cfg'
skip check id for TA7 for now
Reset and halt CSoC
MCU halted. MCU in reset.
Use internal ring oscillator
Enable CSL programming
Clear CSL
total progress = 10.0%
Download bytes to CSoC
total progress = 11.4%
total progress = 11.5%

In this case, the makefile command builds a file called di r ect . cf g and downloads it directly to the
CSoC'’s internal configuration memory and executes code from the internal SRAM. After the download
is complete, the 7-segment display increments by three.

If you hit the reset button on the A7 Evaluation Board, the program previously programmed into Flash
memory will start and the LED again increments by two.

85

Building a Working Design Example Using the Triscend A7 Evaluation Board

Conclusion

In just a few hours, you developed, downloaded, and debugged your own custom system-on-a-chip
design operating in working silicon—assuming that you completed the entire tutorial.

FastChip provides an easy-to-use, graphical environment for creating your customized system-on-a-
chip design. The FastChip Device Link (FDL) utility combines your custom logic design with your
application code. Using FDL, you can download your design onto your target board and debug internal
logic using the visionPROBE Il JTAG-based download and debug cable.

The WindRiver Diab compiler provides optimized program code for the ARM7TDMI processor
embedded within the Triscend A7 Configurable System-on-Chip (CSoC) device. The Diab compiler is
just one of many that supports the popular ARM7 RISC processor architecture.

The WindRiver visionCLICK source-level debugger provides additional visibility into your application
program as it operates, in real-time, on your target hardware. With visionCLICK, you can set
breakpoints, single-step your code, and monitor or preload registers—all while viewing your C or C++
source code.

The Triscend A7 offers you unparalleled time-to-market advantages in embedded applications. With a
minimum investment in development tools, you can employ the cost-effective A7 (CSoC) device to
create custom-tailored designs embedding the powerful ARM7TDMI 32-bit RISC processor.

WaTriscend

Triscend Corporation

301 N. Whisman Rd.

Mountain View, CA 94043-3969
US.A.

Tel: 1-650-968-8668
Fax: 1-650-934-9393

E-mail: contact us@ri scend. com
Web: www. tri scend. com

SKK/JB 2001

86

mailto:contact_us@triscend.com
http://www.triscend.com/

	Introduction
	Before Getting Started
	Scope
	Design Overview
	Part 1: Design with FastChip Graphical Environment
	Invoke FastChip
	Start a New Project
	FastChip Main Window

	Selecting and Configuring Soft Modules
	Command Register
	7-Segment Display Driver
	Various FastChip Features

	Assign I/O Locations, Configuring the Memory Interface Unit
	Defining the Memory Interface Settings
	Assigning I/O Locations

	Generate a Header File for Your Compiler
	Bind the Project
	View the Project Report
	Setup the A7 Evaluation Board
	Configure the parallel port for visionPROBE II
	Apply power to the visionPROBE II cable
	Plug the visionPROBE II cable into the board
	Apply power to the board and switch it on
	Reset the board

	Invoke FastChip Device Link Utility
	Launching FDL from FastChip
	Launching FDL from a Desktop Icon or the Start Menu

	Create CSoC Configuration Image
	Download the CSoC Configuration Image
	In-System Debugging using the FastChip Device Link Utility
	Debug Tools
	Observe and Control
	Setting Breakpoint

	Importing CSL Logic Functions
	Supported Logic Design Packages
	Creating a Custom ‘heartbeat’ Module
	Importing the Design
	Using the New Module
	Other Imported Library Options
	Finishing the Design

	Downloading to Flash
	Part 1 Complete!
	PART 2: Diab Compiler and visionCLICK
	Understanding the Application Code
	Editing main.c
	Debugging with visionCLICK
	Convert Object Modules
	Download with visionCLICK
	visionCLICK debugging – Basics
	Editing from within visionCLICK
	Breakpoints in visionCLICK
	Watching Variables
	Part 2 Complete!
	PART 3: The FastChip Command-Line Interface
	DOS Environment Variable
	FastChip Makefile/Batch File
	Makefile Rules
	Make Clean
	Exercises

	Conclusion

