OPTIMIZING PROGRAMMABLE GATE ARRAY DESIGNS

Steven K. Knapp
Field Applications Engineer
XILINX, Inc.

2069 Hamilton Avenue
San Jose,CA 95125

INTRODUCTION

As designers increasingly rely upon high-density
programmable logic devices for higher system integration and
performance, integrated circuit manufacturers must turn
toward novel architectures to deliver the required capabilities,
instead of relying solely on process technology. Leading this
trend is the XILINX family of programmable gate arrays. The
XILINX™ XC3000-Series Programmable Gate Array (PGA)
family can implement a wide range of digital logic applications
with system clocks up to 40 MHz. Its fast and flexible gate-
array-style architecture affords the designer gate-array-style
design freedom while maintaining the manufacturing and
development freedom associated with programmable logic
devices (PLDs). This family of high-density, CMOS devices
contains many advanced architectural features including
internal three-state bussing and ranges in capacity from
2,000 to 9,000 usable gates as shown in Table I.

Tablel. XC3000-Series Programmable Gate Array Family

XILINX Gate Logic | User | Internal | Internal

Array | Capacity| Blocks| I/O Bus Flipflops
XC3020| 2,000 64 64 | 16-bits 128
XC3030| 3,000 100 80 | 20-bits 200
XC3042| 4,200 144 96 | 24-bits 288
XC3064| 6,400 224 120 | 32-bits 448
XC3090| 9000 320 144 | 40-bits 640

However, with the advent of any new high-density logic
device comes new requirements for development software.
A unique architecture may make a device faster and more
flexible but it also injects new uncertainties for the design
engineer. How will the designer use these new architectural
elements without having to learn a completely new design
entry method? Ideally, a new device family should use a
familiar entry method such as TTL-equivalent elements from
a schematic capture library or Boolean equation entry for
those designers familiar with PAL® devices. The
development system software should take the various input
formats and optimize them to better fit the new architecture.
This becomes especially important for new, highly-integrated
programmable logic devices where multiple entry methods
and optimization techniques may be required since various
types of functions may be reside all on the same integrated
circuit.

This paper describes the XILINX 3000-Series Programmable
Gate Array architecture and its implications on design entry
and software optimization methods. A simple microprocessor
peripheral demonstrates the flexibility of both the PGA

architecture and the development system. Multiple design
entry methods are used including schematic capture and
Boolean equation entry. Software optimization methods are
used both at the design entry level and at the physical
implementation level.

THE XC3000-SERIES ARCHITECTURE

Before delving further into design entry methods, it is
important to understand the XC3000 architecture. The Logic
Cell™ Array (LCA) architecture (or Programmable Gate Array
(PGA) as it is called generically) consists of three primary
elements as shown in Figure 1. A ring of programmable 110
Blocks (IOBs) surround a core array of Configurable Logic
Blocks (CLBs). Programmable interconnect joins the various
block structures to implement the designer's logic.

1/0 BLOCKS
/ S THREE-STATE BUFFERS WITH ACCESS CONFIGURABLE LOGIC
TO HORIZONTAL LONG LINES BLOCKS
p Y

3

A0 o U

+—— INTERCORNECT

°
<

4. 4-

4338

I
1

P

&
z
: - S
P B
p — LJ
4 4. A. CONFIGURATION MEMORY

Figurel. An overview of the Programmable Gate Array (PGA)
architecture showing the Configurable Logic Blocks (CLBs),
the 1/0O Blocks (IOBs), and the programmable interconnect.
An underlying distributed configuration memory array
controls these elements.

Input/Output Blocks (IOBs)

Each of the programmable 1/O Blocks (IOBs), shown in Figure
2, provides an interface between the external package pin of
the device and the internal logic. From the logic description
extracted from a schematic drawing or equation entry, a
designer can program a block as an input, an output, or a
bidirectional I/O pin.

As an input, an IOB supports both direct and registered
inputs, simultaneously. The input register may be

Xilinx™, Logic Cell™, XACT™, and XACTOR™ are trademarks of XILINX, Inc.
PAL® and PALASM® are registered trademarks of Monolithic Memories.

http://www.xilinx.com

programmed as either a positive-edge-triggered D-flipflop or
an active-low, level-sensitive latch. The clock/latch-enable
signal is common to all IOBs along an edge of the device
though the source for this signal may originated from
anywhere on or off the chip. In addition, the clock signal can
be inverted along each edge.

Outputs may be either true or complement of the output
signal and may be either combinational or registered,
depending on programming. The output register is a positive-
edge-triggered D-flipflop, also with an invertible output clock
signal common to all the IOBs along an edge. The output
buffer may be turned on, turned off, or enabled by an
independent three-state control signal (also invertible).

An independent slew rate control allows each output buffer
to drive at maximum frequency or, through programming, the
slew rate may be limited to a more gradual switching edge. A
gradual switching edge, used primarily for non-speed-eritical
signals, reduces the system noise induced by switching
transients. Fast switching edges are a common nuisance in
high-speed CMOS designs. Since I/0O pins on a CMOS
device should never be left floating (because they can self-
oscillate), the development system automatically defines
unused I0Bs as inputs and pulls them HIGH with 50kQ to
100kQ pull-up resistors.

-
o | our S ouTPUY slew | |passve
© | mvear INVERT SELECT RATE | |PULLUP
§ I_s
i D—
THREE STATE «—-- y

(OUTPUT ENABIE)

w,_.,n‘L)

P
F
L

DIRECT IN 4. " -+ —
Ji
REGISTERED N +— ‘ e D 4 <}— d
N FLIP TMor
FLOP CMOS
o INPUT
CAICH THRESHOLD
R
oR) ® RESET)
oKt
K2
PROGRAM
CONTROLLED

MULTIPLEXER O = PROGRAMMABLE INTERCONNECTION POINT or PIP

Figure2. The Input/Output Blocks (IOB) includes input and
output registers and various /O options selected through
programming.

Conflgurable Logic Blocks (CLBSs)

An array of Configurable Logic Blocks (CLBs) comprise the
elements used to build logic functions. Arranged in a matrix
surrounded by the user I/O, each CLB contains a
combinational logic section and two flipflops as shown in
Figure 3. The actual configuration for a CLB is determined
after a design is partitioned from schematic or equation entry.

Five inputs feed the combinational logic section which is built
from a 32-by-1 look-up table. Each input acts as an address
line for the look-up table. Using this approach to implement
logic, each block can implement any possible function of five

inputs, any two functions of up to four inputs, and some
limited functions of six or seven inputs (six or seven input
functions use feedback from the CLB internal flipflops).

The two D-type flipflops share a common clock input, a
common asynchronous reset input, and a clock enable. The
clocking structures on the device allow a wide variety of
applications ranging from fully synchronous systems with a
single clock to those clocking each CLB individually. Also the
clock inputs to a CLB are invertible which eliminates the need
to route both phases of a clock signal throughout the device.
All inputs may be driven from the interconnect resources
surrounding each block. "Floating" inputs are automatically
tied to an appropriate value by the development system (i.e.,
if the clock enable pin is left floating or unused in the design,
the development system sets it to a logic HIGH, or always
enabled).

Data inputs to either flipflop are supplied from the
combinational logic functions labeled F or G in Figure 3 or can
come from the block's direct data input pin.

Each CLB has two outputs which may drive interconnect
networks since a single CLB may hold two, independent
functions.

: di
OATA |y = S
¥ T o a
£ 1
oN
G
AD ax
— X
4 ax . ¢
Losic “i e COMBINATORIAL
YARWBLES ~7 8 FUNCTION
e G |
Y
=
ENABLE CLOCK it 2
clock —i—& dj
RESEI I rd

Figure 3. Each Configurable Logic Block (CLB) includes a
combinational logic section, two flipflops and various program-
controlled multiplexers that define logic flow through the
block.

Programmable Interconnect

Programmable interconnect resources provide signal
connections between the inputs and outputs of the 1/O and
logic blocks. These interconnections are composed from a
two-layer grid of metal segments. There are three types of
interconnect resources as shown in Figure 4: Direct
Interconnect, General-Purpose Interconnect, and Longline
Interconnect. After placing the designer's logic on the
device, the Automated Placement and Routing (APR)
software will use these various interconnect resources to join
the blocks.

Direct interconnect consists of short, dedicated pieces of
metal connecting only adjacent blocks. For example, a single

CLB has direct connections to its four nearest neighbors—the
blocks above, below, left, and right. Direct interconnect is
ideal for register transfer functions like shift registers or
counters. Since direct interconnect is also the fastest type,
shift registers built with a PGA can operated up to 60 MHz
worst-case.

CLB

PULL-UP
RESISTOR

CLB

Figure 4. Programmable interconnect consists of three
different resources. Direct interconnect (shown as shaded
lines) joins adjacent blocks. General interconnect (shown as
narrow solid lines) uses switching matrices to build flexible,
localized connections. Longlines (shown as heavy solid
lines) are ideal for clock signals since they have almost no
skew.

General-purpose interconnect consists of a grid of five
horizontal and five vertical metal segments located between
the rows and columns of logic and I/O blocks. Switching
matrices connect the various metal segments into the signal
networks required to build the designer's logic. General-
purpose interconnect is ideally used for medium fanout,
localized connections since each additional switching matrix
path represents an additional small delay.

Longline interconnect bypasses the switching matrices and is
intended for high fanout signals or those requiring minimum
skew (like clock signals), or those that must travel a long
distance across the device. Longlines are single metal lines
that traverse the entire height or width of the device. Since
each longline is a continuous piece of metal, it represents a
minimum skew path for signals tapping off from it.

Each interconnect column has four such longlines. The
outer two vertical lines in each column are dedicated to
clocking functions while the middle two are intended for
general use. Each interconnect row has two horizontal
longlines. An additional two longlines are located adjacent to
the outer edges of the device for driving IOBs or for
connecting other longlines together.

The horizontal longlines have additional capabilities. Each
longline has a number of three-state buffers that may drive

signals onto the common longline. With this capability, the
horizontal longlines may be used to build bidirectional,
internal busses on the device. In addition, the three-state
buffers can be used to build wired-AND functions for fast
decoding since each longline has two optional pull-up
resistors at each end (their process-dependent values range
from 2kQ to 8kQ). The smallest of the XC3000-Series, the
XC3020, can include a 16-bit bidirectional bus while the
largest, the XC3090, contains a 40-bit bidirectional bus
capability.

SOFTWARE APPROACHESTO DESIGN ENTRY AND
OPTIMIZATION

OVERVIEW

The Programmable Gate Array design process is shown in
Figure 5. The various design modules may be entered using
schematic capture or using a PALASM® or JEDEC input file.
After entry, the logic within the each module may be
optimized for the PGA architecture. The various design
modules are merged together into a single, coherent logic
description possibly from a hierarchical netlist.

After entry, the design is physically partitioned into the logic
blocks on the device. Some optimization of the logic is
performed to remove any unused or disabled logic functions.
Further optimization of the physical design occurs when the
logic blocks are placed and routed on the device. Human
intervention on the physical design is optional using the
XACT™ Design Editor which allows manual optimization of
placement and routing.

TTL USER-DEFINED PALASM

LIBRARY MACROS DESCRIPTION
CONVERSION

SCHEMATIC EDITOR

PROGRAM

LOGIC OPTIMIZATION

v XNFFILEMERGING

LOGIC PARTITIONING

Y

AUTO PLACE & ROUTE

Y

OPTIONAL MANUAL
OPTIMIZATION

Figure 5. The Programmable Gate Array design process
showing various stages of design and optimization steps.

| PROGRAMMABLE GATE ARRAY

ceiver

20L8 :
Decodel Control Sianals
Logic
- 161
Counter

IRD
MWR
M_10
A15-A8
IALE [
8088 T fa00R
uP
AD7-ADO
8286
Trans-

Eight-Bit Internal Bus

Figure6. An 8088 microprocessor peripheral design using a Programmable Gate Array. The circuit
shown above requires a small portion of the 2000-gate XC3020 (13 of 64 CLBSs).

DESIGN ENTRY
A Microprocessor Peripheral Example

The best way to illustrate a concept is through example. For
the purpose of this discussion, assume that a design
engineer was confronted with the microprocessor peripheral
design shown in Figure 6 (which is just a portion of the overall
design). He is asked by management to integrate the design,
reduce the power consumption, and all the typical design
challenges that confront a design engineer.

The design consists of an 8088 processor which will be
implemented as a discrete device (though something of Z80
complexity would theoretically fit within an XC3090). Also, an
8282 octal bus latch demultiplexes the processor's eight-bit
address/data bus while an 8286 bus transceiver directs data
to and from the data bus. A pair of '161 preloadable binary
counters implement an eight-bit counter which is preloaded
and read by the processor. The output of the counter
attaches to the processor's data bus via '244 three-state
buffers. A PAL device decodes the address bus for
controlling the counter and three-state buffers. The
equations for this PAL device are shown in Figure 7. Much
more logic will fit into the 2,000-gate XC3020 PGA, but for
this example, a small design easily illustrates the various
methods of design entry.

The goal of this simple design example is to integrate the
octal latch, the bus transceiver, the '161s, the '244, and the
PAL device into a highly-integrated solution. A standard PLD
approach does not work because of the address/data bus

; ThisPAL decodes the address bus for
; loading, reading, and resetting counter

; WRITE ADDR = FFEO load counter
; READ ADDR = FFElI read counter
;: WRITE ADDR = FFE2 clear counter

CHIP ELECTRO PAL20LS

Al5 Al4 Al13 Al12 AIll A10 A9 A8 A7 A6 A5 GND A4 A3 A2
Al A0 /RD /WR M_IO /LOAD /READ /CLEAR VCC

EQUATIONS

JLOAD = Al5 * Al4 * A13 * Al2 * AIll * A10 * A9 *
A8 * AT * A6 * A5 * A4 * JA3 * A2 *
/AL * /A0 * M_IO * WR

/JREAD = Al5 * Al4 * A13 * A12 * AlIl * Al0 * A9 *

A8 * AT * A6 * A5 * Ad * /A3 * JA2 *
/Al * A0 * M_IO * /RD

ICLEAR = A15 * Al4 * A13 * A12 * AIl * A10 * A9 *
A8 * AT * A6 * A5 * A4 * JA3 * A2 *
Al * /A0 * M 10 * MR

Figure 7. The 20L8 PAL equations describe the address

decoding for loading, reading, and clearing the counter.

demultiplexing and because of the bidirectional bussing
between functions. Other than the XC3000 family, no single-
chip programmable solution exists.

The engineer, of course, wants to implement this design
using a familiar design methodology while still utilizing the
advanced features of the architecture. Schematic capture
offers an easy and familiar method of connecting various
devices together. The TTL library allows the designer to
implement his logic with familiar elements. Boolean equation
entry allows for easy conversion of PAL devices. And finally,
the hierarchical structure of the design entry process allows
the designer to build his own macro functions for elements
not already in the library.

Once each element is entered using the easiest method, the
various pieces are merged together to form a cohesive,
single design description. This logical description, in the
Xilinx Netlist Format (XNF), is then automatically partitioned
and reduced to optimally fit into the configurable logic blocks
and /O blocks.

Implementing the counters

The two '161 counters are implemented using the XILINX
schematic library. The designer would simply bring up the
'161 symbols from the library and connect the appropriate
signal wires between the counters and the '244-style buffers.
For aid in debugging and simulation, signal names should be
attached to the various signal wires, though the schematic
system will assign default names if none are given by the
designer.

Implementing the octal latch and bus transceiver

The 1/O block structure accommodates a wide range of
interface applications. For this design example, both the
8282 octal latch and the 8286 bus transceiver fit into just
eight 1/O pins (with eight internal three-state buffers (TBUFs)
used as part of the transceiver). Each IOB input path has
both a direct and a registered input available simultaneously
for both the latch and transceiver. Also, each IOB has athree-
state-controlled output buffer for use by the transceiver.

The latch demultiplexes the lower eight bits of address (A7 to
A0) from the address/data (AD7 to ADO) bus using the /ALE
signal from the processor. The XILINX schematic library does
not have an 8282 element but the designer may build his
own from the lower-level primitives available in the library.
From the schematic shown in Figure 8, the input register is
set as a latched input (a '373-type latch) with the /ALE used
as the active-low latch-enable signal. Therefore, addresses
are latched during the address cycle while the data can flow
directly into the device during the data cycle on the direct
inputs.

To build the bus transceiver, merely add logic to the latch
drawing. Each IOB contains a three-state output buffer with
an invertible three-state control. The processors read strobe
(/RD) controls the direction of data. When the processor is
writing data, the output buffers are turned off and the internal
three-state buffers are enabled. When the processor reads
data, the output buffers are enabled while the internal buffers
are high-impedance. The invertible three-state control on the

R0 D’.

0BUFZ

DATAO

ADORO .

IALE

Figure 8. Both the 8282 bus latch and the 8286 bus
transceiver are integrated into eight I/O Blocks. The diagram
shows how a macro would be built for one bit of this function
using the primitives in the XILINX library.

IOB allows a single line to control both the 10B buffer and the
internal TBUF.

Converting the PAL Device intothe Xilinx Netlist Format

Incorporating PAL devices within the Programmable Gate
Array used to be a more difficult problem for designers. PAL
devices have a sum-of-products (AND-OR) architecture much
different from the PGA's array architecture. In a sum-of-
products device, all the logic is broken down into a two-level
logic structure. The inputs and feedback terms drive very
wide AND gates which, in turn, feed smaller OR gates.
Therefore, a design which may be optimized for the wide
combinational logic of a PAL device may not fit well in a PGA if
merely converted directly from the PAL device
implementation.

To help designers with this conversion process, however,
XILINX has created atranslator and optimizer for PAL designs
written in PALASM format (or translated directly from the
JEDEC programming file).

The translator takes the PALASM or JEDEC file and directly
converts it to a XILINX Netlist Format (XNF) file for use by
XILINX development system. However, a direct translation will
usually yield a sub-optimal design which will affect density and
performance. Therefore, an optimizer program takes the XNF
file (which is merely a logic description of the design) and
optimizes it to better fit the PGA architecture through a
technology called logic synthesis.

Logic Synthesis and Design Optimization

Logic synthesis technology allows a designer to enter his
logic without regard to the specifics of the device
architecture. In this example, a design specifically
implemented in a sum-of-products architecture was
remapped to better fit the architecture of the Programmable
Gate Array.

Designers often use basic two-level minimization and logic
synthesis when designing with PALs. Espresso, developed

jointly by International Business Machines and the University
of California Berkeley, remains one of the best programs for
logic minimization, when evaluated over a large set of logic
functions.

However, two-level minimizers are designed for devices
limited by logic complexity such as a PAL device where the
first level is a programmable AND field followed by a fixed OR
field. As a simple example, a five-input XOR requires two
passes through standard PAL logic (not using a more
expensive XOR PAL). The constraint in this example is the
number of product terms allowed in the fixed OR field. A
simple five-input XOR, when mapped into the sum-of-
products architecture of a PAL device, requires 16 product
terms (or a 16-input OR gate) while most PAL devices have
only eight product terms. So a two-level minimizer takes this
logic complexity constraint into account when synthesizing
logic.

However, programs that perform two-level minimization do
not generally apply to the PGA architecture. In a PGA device,
logic is not limited by complexity but rather by fanin. Each
logic block can implement any possible function of five, but
only five, inputs (though limited functions of six and seven
are possible). The five-input XOR function in the example
above easily fits into a single CLB.

Logic synthesis is helpful for PGA designs requiring many
inputs. For our design example, the address decoding for
reading and writing the counter is just such a case. The
decoding function fits into a single pass of the PAL device's
wide combination logic and uses three of the PAL device's
macrocells. To map the same function into the PGA, the
designer must be cognizant that each CLB has only five
inputs so the design requires multiple levels of logic. A
multilevel approach would also be required if the PAL
function were implemented in a gate array.

To make this process easier and automatic, XILINX developed
a PAL design translator and optimizer. The answer derived
by logic synthesis for this design example, which requires a
20L8, reduces the PAL design down to five CLBs. While this
is a simple example, more dramatic results occur--especially in
complex designs which tax human comprehension.

The designer may tell the optimizerto give him a quick answer
or allow the software to search for a solution which optimally
fits the PGA architecture. During the course of the search,
the software will apply different optimization techniques and
will keep track of two solutions. One solution tracks the
minimum number of CLBs required and another searches for
the minimum levels of logic required. The first tightly packs
the CLBs for maximum density while possibly using more
logic levels. The second solution may use more CLBs, all
working in parallel, for best performance. In most cases, the
result for best density matches that for best performance, but
in some cases, the results can be dramatically different.

The optimizer is a descendant of the MIS and Espresso logic
reduction algorithms, both of which originated at U.C.
Berkeley. However, it employs proprietary technology for
optimizing fanin-limited logic.

Other Uses of Logic Synthesis

For this design example, the optimization program performed
the architectural remapping required to implement the PAL-
based decoder in the PGA. Technology remapping is not
limited to PAL devices only but can be applied to just about
any othertype of logic technology like TTL.

There are other uses for the optimizer, however. For
example, a designer already comfortable with Boolean
equation entry as a design method, can use PALASM to
build a PGA directly from equations. Though PALASM is not
sophisticated enough to describe some of the elements in
the PGA architecture (like the internal three-state buffers), it is
useful for describing combinational logic.

Merging the variousentry formats

Each design entry method for XILINX PGAs creates an XNF
file. Various sections of a design may have been entered
using different methods. In order to merge these files into a
cohesive design, a separate program combines the various
XNF files into a single XNF file before partitioning the logic
into CLBs. This merging program also flattens the design
hierarchy into a single-level netlist. Hierarchy allows
designers to use macros, to apply different types of
optimization on separate portions of his design, and to build
the design in modules.

Modularity provides the same benefits for hardware design as
it does for software. Software designers use modularity to
speed development and to isolate bugs to a specific module
or subroutine. Similarly, in hardware design, each logic
module can be designed and debugged separately. After
the modules are completed, they are joined hierarchically to
form the overall design. If bugs should appear, they can be
quickly isolated to a specific module.

PHYSICAL IMPLEMENTATION
Partitioning the Design into Logic Blocks

The software effort to this point has been in entering or
optimizing the design. Another program partitions the logic
from a flattened and merged XNF file to build the logic
specifically for CLBs. Up until partitioning, the design exists
only as a logic description. The partitioner implements the
design atthe physical level.

This program not only partitions the logic but also removes
any unused logic. For example, the terminal count (TC)
generated by the second '161 counter in the design example
would not lead to an output. If not removed, this would be
wasted logic. The partitioner, therefore, removes any
unused inputs or outputs, or single-input gates, or disabled
functions (such as assigning a clock enable signal HIGH or
always enabled).

Placementand Routing

After partitioning the logic into blocks, the blocks must be
assigned to a physical location on the die and their

connections routed. One can think of the CLBs as generic
components on silicon printed-circuit board. At this point, the
software knows which "components” are to be used but not
where to place those components on the circuit board.

The placement is performed using an algorithm called
"simulated annealing” which models the physical process of
annealing metals. During an annealing process, a metal which
contains either deformations or imperfections, is heated to
just above the melting point. At elevated temperatures, the
atoms within the metal are allowed to move about freely in
order to remove the defects. As the metal is slowly cooled,
allowing for equilibrium at every stage, crystallization or an
ordering process begins. Finally, at the freezing point, the
metal is crystallized in a more orderly state. The simulated
annealing algorithm, in general, is used to find good solutions
to complex optimization problems. Automatic placement is
just one application of the algorithm.

The algorithm "melts" the design in order to allow the CLBs
and |OBs to move about freely. At high temperatures, blocks
are allowed to move long distances across the device
accomplishing global placement. Therefore, at high
temperatures, blocks trapped on the wrong side of the
device can quickly move to a more optimal location. AS the
temperature decreases, the blocks are restricted to a more
limited move set. At low temperatures, only local placement
occurs.

The goal is to "cool" the design slowly enough so that no new
imperfections or irregularities are introduced. If the cooling
phase proceeds too quickly, "quenching" occurs meaning
that any imperfections (in this case, blocks placed in a
suboptimal location) are frozen into the design. To avoid
guenching, the temperature decreases in small decrements,
especially when near the "freezing point." Also, the design is
allowed to stabilize, or reach equilibrium, at each temperature.

At each successively lower temperature, the placement is
evaluated. Blocks are typically only allowed to move to
locations which will provide a better placement. However,
depending how high the "temperature" is, a block has a
certain probability that it will be allowed to move to a worse
location. The advantage of this process is that it prevents the
design from becoming frozen in a suboptimal state. A
placement algorithm which only strives for a better placement
will typically find only a localized solution and never find the
global, optimal solution.

After placement, the program assigns which signals will use
longlines and then routes the signal networks. After routing,
the program calculates the worst-case interconnect delays for
each network from the network source to each load. The
delay report and all other information about the placement
and routing is summarized in a report file automatically created
by the program.

The placer and router treats all elements as though they have
the same importance. In most designs, however, certain
portions are more important or more time critical than others.
Therefore, the designer can define "constraints" for the
placer and router. For example, from the schematic, the
design may define the placement of the 1/0 blocks or whether
a net requires critical timing, or where to use longline
interconnect. In addition, the automated placement and

routing program accepts ASCII text instructions describing
any design constraints.

Human Intervention

In cases where a design has particularly stringent
performance requirements, the designer may elect to pre-
route or pre-place portions of the design himself using the
XACT Design Editor. The design editor allows the designer
to specify elements at the device level in a mouse-based,
graphical environment. By pre-placing and pre-routing critical
sections of the application, the designer can directly control
the performance of his application. As the critical signals are
routed with the design editor, the system calculates the worst-
case interconnect delays and displays them for evaluation.
By adjusting the placement and the routing, the design
performance can be "tweaked."

By pre-placing and pre-routing portions of the design, and
then locking them in place through the ASCII text constraints
file, the designer guarantees that his application will work at
the required performance level after the first pass through
automatic placement and routing. Also, by pre-placing
portions of the design, the computational effort required to
generate an optimal placement is reduced along with the
execution time.

In cases where the automatic placement and routing software
did not fully route all of the signal networks, the design editor
is useful to complete any unrouted connections. As with
printed-eircuit board placement and routing, a human
designer is "smarter" than the average computer program but
not as inclined to perform the tedious task of routing every
net manually.

Completing the Design

The design is complete after placement and routing. The
programming bitstream can be created for downloading into
the part. Optional steps include simulating the design with
the post-placement routing delays or debugging the design
in-eircuit with the XILINX XACTOR In-Circuit Verifyer.

SUMMARY

In Programmable Gate Array (PGA) designs, optimization
occurs at two levels. Atthe first level, the logic is optimized to
best fit the PGA architecture. Logic design optimization
provides the capability of mapping from an alien architecture,
like PAL devices or TTL, into a form which optimally fits the
PGA.

The second level of optimization occurs during the physical
implementation process. The logic is further optimized as it is
physically mapped into the Configurable Logic Blocks
(CLBs). The placement and interconnection of the CLBs and
IOBs is optimized using an advanced simulated annealing
algorithm.

Design optimization, at both the logical and physical levels, is
a focus of continuing research and development at XILINX.
By optimizing designs remapped from other technologies,
designer can apply new devices, with new architectures, to
better solve old problems.

	INTRODUCTION
	THE XC3000-SERIES ARCHITECTURE
	Input/OutputBlocks (lOBs)
	Conflgurable Logic Blocks (CLBs)
	Programmable Interconnect

	SOFTWARE APPROACHES TO DESIGN ENTRY AND OPTIMIZATION
	Overview

	DESIGN ENTRY
	A Microprocessor Peripheral Example
	Implementing the counters
	Implementing the octal latch and bus transceiver
	Converting the PAL Device into the Xilinx Netlist Format
	Logic Synthesis and Design Optimization
	Other Uses of Logic Synthesis
	Merging the various entry formats

	PHYSICAL IMPLEMENTATION
	Partitioning the Design into Logic Blocks
	Placement and Routing
	Human Intervention
	Completing the Design

	SUMMARY

