
Module Generators for Xilinx
Field Programmable Gate Arrays

Steven H. Kelem
Sr. Software Engineer

Steven K. Knapp Jorge Seidel
Sr. Software Engineer New Product Development Manager

Xilinx, Inc.
2100 Logic Drive

San Jose, California 95124

ABSTRACT

A new, more powerful set of module generators produce
optimized implementations of particular logic functions for
Xilinx XC4000 Field Programmable Gate Arrays (FPGAs).
Module generators allow a designer to spend more time
actually designing and less time worrying about device­
specific implementation details. Module generators are
particularly useful when designing with field programmable
gate arrays because of their unique architectures and their
ability to implement complex functions. The features and
capabilities of a module generator for Xilinx XC4000 FPGAs
is described in this paper.

INTRODUCTION

FPGAs are quickly pushing usable densities to 10,000 gates
and more. Existing gate-level tools become ineffective for
many applications at this density. New types of design tools
are required to help designers manage ever-growing design
complexity and to abstract functions to a higher level. Why
should counters be described as a group and ANDs, ORs,
and flip-flops when designers think of a counter as a
complete logic function with certain attributes?

Module generators offer many benefits to FPGA or ASIC
designers. They abstract the design process. Designers
build applications more naturally out of functional
descriptions instead of gate descriptions. Also, module
generators handle multi-bit operations and full data paths
which are common in large designs. Module generators
help the designer become more productive and creative. By
automating the actual implementation (the major portion of a
design), module generators:

• Help reduce design cycles since major portions of the
design are automated.

• Allow the designer to easily explore more alternate
approaches to building the application.

• Aid the designer by providing expert knowledge of how to
build a particular function for the target technology. This
not only benefits the veteran FPGA designer but is
especially valuable for the novice user.

The last point is particularly important. Ideally, a designer
using FPGAs should understand the underlying architecture.
This allows the user to exploit the capabilities of the device

fully. However, with a vast multitude of device architectures
available on the market, it is difficult to be an expert in all of
them.

New architectures also require new design techniques.
Techniques borrowed from 7400-series TTL do no fully
exploit FPGA or ASIC architectures. For example,
cascading multiple 74-163 four-bit binary counters is not the
only way to build a large modulo clock divider (contrary to
popular belief among many digital designers). An alternate
approach with a linear-feedback shift register (psuedo­
random counter), is much more effective in most FPGA and
ASIC devices. The appropriate implementation technique is
automatically selected in module generators.

.s. o
:;;;

,--------.---------) Y

~------~~F~un~c~tl-o-n-M-O~d-u-le-s __ ~~~~~----~
Figure 1. A block diagram of the Xilinx BLOX module generation

system showing the significant elements

THE XILINX BlOX
MODULE GENERATION SYSTEM

Xilinx recognized the need for a tool that provides users
optimal logic solutions without burdening the designer with
all the device-specific information. The Xilinx BlOX module
generation system shown in Figure 1, was created as a tool
to aid designers using Xilinx XC4000 Family FPGAs.

The Xilinx BlOX system provides the following capabilities
for the user:

• Designs are described at the block diagram level with
parameterized modules. The modules can provide
thousands of logic implementations for various popular
logiC functions. Gate-level descriptions are not required.
However, a designer can inter-mix function modules and
gate-level primitives in the same design if desired.

• Designer productivity is greatly increased since designs
are done from the functional level, not the gate level.

• A designer need only specify the width and type of a bus
once, anywhere along the data path. The widths and
types Of data carried on a data path are automatically
propagated throughout the design and through levels of
hierarchy. The size of an entire design can be modified by
changing just a few fields on the schematic.

• Interfaces are provided to common schematic capture
environments like Mentor Graphics®, VIEWlogic®,
Cadence®, Data 1I0®-FutureNet®, and OrCAD®.
Therefore, there is no need for the designer to learn a new
tool or new deSign process.

• The module generator custom tailors the logic
implementation to the specific needs of each module. The
implementation of a comparator, for example, will depend
on the size of the data feeding the comparator and
whether the equality, greater-than, or less-than outputs (or
a combination) are used.

• Device-specific features are automatically used when
applicable. For example, clocking or high fan-out signals
are automatically aSSigned to special high-drive buffers.

'. The system uses Xilinx-specific optimization techniques to
boost the performance and density of logic functions. It
incorporates expert knowledge of various implementation
alternatives.

Design Flow. Using the Xilinx BlOX system, a designer
enters the design using his or her favorite schematic editor
and draws a simple block diagram for a majority of the
design. Functions without a support module can be
implemented using gate-level primitives or other macro
library functions. Schematic entry is a natural means to
describe such high-level functionality.

The deSign is converted into a standard. hierarchical Xilinx
Netlist File (XNF) file and processed using the Xilinx BlOX
software.

Xilinx BlOX performs the following operations on the
design:

• The widths and types for all data paths are propagated
throughout the design.

• The design is architecturally optimized to take advantage
of special features available on XC4000 FPGAs. These
optimizations include:

o Assigning clock and high fan-out signals to the eight
high-drive, low-skew buffers available on the Chip.

o Assigning a master reset signal to the global set/reset
function, if applicable.

o Remapping any arithmetic functions (adders. binary
counters, accumulators) so that they can use the
special fast-carry logic on the XC4000 device. The
fast-carry logiC is especially efficient for wide arithmetic
functions.

o Moving registers and flip-flops from the core array of
logic blocks out to the I/O blocks where applicable.
This helps provide maximum density for a design.

• The logiC modules are expanded into their full
implementation based on how they are used in the design
and on the parameters attached to individual modules.
Most modules are expanded into a netlist description of
the function. Arithmetic functions. however, are expanded
into hard macros which contain logic block partitioning and
relative placement and routing information. This
guarantees improved performance.

• After the expanded modules are merged together. the
entire design is written as an expanded. generated netlist.

Available Logic Modules. Currently. the Xilinx BlOX
system provides 30 different parameterized module
generators including schematic symbols for several popular
schematic editors. These 30 modules provide a designer
with literally thousands of possible logic functions. The list
of modules is shown in Table 1.

Table 1. List of Xilinx BlOX Modules.
Adder/Substracters Accumulators

Data Registers Shift Registers
SRAMs PROMs

Comparators Inputs
Outputs Bus Interfaces

Bidirectional 1I0s Counters
Multiplexers Bus Inversions

Force a value onto a bus Bus-Wide Boolean Functions
Three-State Buffers

The bus-wide Boolean functions offer different ways to
perform an AND. OR. or XOR operation on the bits of a bus
in the following manners:

• AND/OR/XOR all of the bits of the bus together and
provide a single-bit output. For example, XOR all the
elements of a bus to build an even parity generator.

• ANO/ORIXOR bits from one bus with corresponding bits
from a second bus and provide a bus-wide output.

• ANO/ORIXOR each bit of a bus with a single-bit input and
provide a bus-wide output. The single-bit input is usually a
control signal like an enable.

Parameterizing B Module. The designer may attach
various parameters for a specific module. This capability
allows a designer to build a huge number of different
implementations for a particular function. For example, the
counter module (COUNTER) shown in Figure 2 can have
the parameters listed in Table 2 to control the set and reset
functions plus the counter's counting sequence.

DATA COUNT

Figure 2. The COUNTER module from the Xilinx BlOX module
library.

Table 2 Parameters Available on COUNTER Module
Parameter Value

None if not connected
SET Asynchronous

Synchronous
None if not connected

RESET Asynchronous
Synchronous
BINARY (default)

SEQUENCE JOHNSON (Circular counters)
lFSR (linear feedback shift reqister)

Considering just the counter widths between 1 and 32 bits,
this allows 575 unique implementations! This does not
include the other variations provided by preloading, clock
enabling, and up/down control.

Designer Productivity. The module generators also
boost the deSigner's productivity. The amount of time
required to enter a design is significantly reduced since the
engineer enters the design at the block diagram level. For
example, entering a 32-bit bidirectional data bus is quite
tedious if drawn at the gate level. This simple example
requires 129 symbols, 160 wire connections, and 130 labels.
Using the BUS_IO module generator, the same design
requires only one symbol, two wire connections, two labels,

and one parameter describing the bounds of the bus.
likewise, the schematic is significantly easier to view since
the entire bus interface fits in a small portion of an 'A' size
drawing. The same cannot be said of the gate-level
drawing.

a.)
BOUNDS-31:0

Figure 3. s.) A 32-bit bidirectional data bus specified with a
single module symbol is much easier than drawing 32
gate-level representations as shown in b.).

The data propagation feature is extremely useful, especially
if the size of the data path changes. Instead of having to
add or remove logiC on the schematic, the designer need
only change the width of the data bus via a parameter on
any of the I/O symbols. The Xilinx BlOX software
automatically propagates that information throughout the
design.

Module generators help implement the actual design. The
designer need not worry how best to implement a given
function. He or she merely lets the Xilinx BlOX software
optimize and expand the design based on how the module is
used. For example, the XC4000 FPGA device has specific
logic designed to increase the performance and density of
arithmetic functions like adders and counters. To use this
special logic, a designer previously used pre-defined hard
macro implementations of these functions with fixed data
path widths. With Xilinx BlOX, however, the designer can
create custom adders and counters of various sizes
automatically. The Xilinx BlOX software will create the hard
macros and also incorporate additional logiC if there is extra
space in the hard macro.

Furthermore, the architectural optimizations squeeze the
maximum density and performance from a design. In many
cases, a deSigner may be unaware of special features or
design techniques for the device. The Xilinx BlOX software
automatically transforms the logic to use these features. For
example, Xilinx XC4000 devices have flip-flops in the
inpuVoutput blocks. Instead of wasting the flip-flops in the
internal core, the Xilinx BLOX software will move data
registers and flip-flops into the 110 blocks when applicable.

ADD SUB

REGISTER REG:fsTER SUM SUM OUT OUTPUTS _ _
_ ~Z(N:;P.;U.;;T.;;S;..D;.A~T~A~_~ REG_OA'rA ~_"' ___ f>I\TA ou

D.-1$cO

ATA OU'ljll _____ -l!)..A~C~A=::HH:.!.Y .s:OU~T lOT aOUNDS­
FAST

"£S£T

C CK

.. ,.~-~---'
".&~--'."'IIC'"

".: w r----t-'UOO:,.

.0:,.1::_-----'

........ --..yNCN

Figure 4. A complete design for a 16-bit registered adder drawn in VIEWlogic with Xilinx BlOX modules. The width and
types for all data paths is automatically propagated throughout the design. The logic functions are generated and
optimized for Xilinx XC4000 Field Programmable Gate Arrays.

-.... -- -- :ar. -- -- --.
~~ r

s: 0: 0: 0: 0: 0, 0

0: o. 0, 0: ~ 0 0, ,

[~
. .

0 · 0
.

0 , 0 , 0 ,

(I 0
,

0
,

0
,

0
.
t 0:

~ 0, 0, 0 0 ~: 0
,

, , ,

-
~ I~I 0

,
0

,
0 · 0

,
0

.(1 ,,~
, . · . d: 0: 0 0 0 0

r- B: I { 0 0 0 0 OH

I (
.

0: 0: r 0: 0 , 0

! 0' 0:
,

0: 0
If' d:

0
,

0 , .
~-:: r=-'

I.v. OCI 00 -=~ _~9-I -...

-- -1~ -,:;;

0:
,

0: 0 ,

0: 0
,

0
.

. ,
0 0 0 ,

0: 0: 0:
0 0 0 ,

.
0 0 0

0: 0: 0
,

.
, ,

0 0 0:

0
,

0 0: , .
, , ,

0 0 0 , , ,

OCI L 00

-r -.c:-.
I

0:
'0
.0

0
,

'0
, ,0

0 '0

0
,

'0
,0

0
,

-1
~

O' I ~

0

0:

0
,

0 ,

00

'0
,0

'0
,0

'0
,0

'0
,0
,

''\ -'

Figure 5. The same 16-bit adder design implemented in a Xilinx XC4003 device. The entire design occupies only a fra,ction
of the available device resources, After the schematic diagram was entered, the design was automatIcally
processed through the Xilinx software in under five minutes on a Sun® SPARCstation®,

A DESIGN EXAMPLE

The best way to describe the functionality of the Xilinx BlOX
software is through an example. Figure 4 shows a block
diagram for a simple design incorporating a 16-bit adder,
two 16-bit data registers, plus various input and output pins.
As it turns out, Figure 4 is more than just a block diagram-it
also is the complete design drawn with the VIEW/ogic
schematic editor (the design appears similar in other
editors). Note that the size of the data path is 16 bits wide.
The bus bounds are set on the INPUTS syJTt>oI feeding the
first register.

The design is processed with Xilinx BlOX after being
translated from the VI EW/ogic format into the Xilinx NeUist
Format.

Xilinx BlOX first expands the data types on the data path.
Because the data type is only defined on the INPUTS
symbol in this example, the Xilinx BlOX software must
determine the widths of all the other modules. Since the
REGISTER module is attached to the INPUTS module via
the DATA bus, Xilinx BLOX assumes that the REG DATA
output bus is the same width and type as the DATA input
bus. This process continues until the width and type of all
networks within the design are resolved.

The next step is the architectural optimization of the design.
Xilinx BlOX improves the design by mapping logic functions
into the special features of the Xilinx XC4000, where
applicable. In this example, the software notices that both
registers share a common asynchronous reset connection.
Since the XC4000 devices have a special dedicated global
seUreset function, the software removes the RESET signal
from the two REGISTERS and automatically attaches it to
the global seUreset function.

Likewise, the Xilinx BlOX software notices that the CLOCK
signal feeds 32 flip-flops (or two 16-bit REGISTERs). It
therefore assigns the CLOCK signal to one of the eight high­
drive, low-skew buffers within the Chip. This creates a fast,
high fan-out clock distribution network with a delay of only
5.7 nanoseconds to all 32 flip-flops.

Next, the software notices that the adder function
(ADD_SUB) should be implemented using the speCial fast­
carry logic on XC4000 devices. It will automatiCally create a
hard macro for the adder when it is expanded. Furthermore,
the software notices that the second REGISTER connected
to OUT can be incorporated into the same hard macro.

Finally, the software notices that the first REGISTER driving
REG_DATA can be folded into flip-flops located in the 110
blocks. This boosts density by reducing the number of logic
blocks.

The next major step is module expansion where the Xilinx
BLOX software builds the specific implementations for each
module. For this example, it will build a netlist description
for the INPUTS, OUTPUTS, and the REGISTER driving the
REG DATA bus. However, the software will build a hard
macro for the adder combined with the REGISTER driving
the OUT bus.

After using Xilinx BlOX, the design is placed and routed
using other Xilinx software. The entire design requires 34
VO blocks and only nine logic blocks on an XC4000 device.
The resulting design is shown in Figure 5.

H the designer now decided to build the same basic function
but with a 32-bit data path, there would only be one change
required on the schematic. The BOUNDS parameter on the
INPUTS module would have to be changed from '15: 0' to
'31: 0' and then the design reprocessed with Xilinx BLOX.

SUMMARY

Module generators, like Xilinx BlOX, significantly boost a
designer's productivity. They also free deSigners from
device-specific implementation details and allows them to
focus more on actually designing the application.
Furthermore, module generators allow deSigners to explore
new or modified approaches more easily.

With the advent of 10,000+-9ate FPGAs, module generators
offer a powerful and effective means to make the design
effort easier and more effective while handling ever­
increasing design complexity.

	ABSTRACT
	INTRODUCTION
	THE XILINX BLOX MODULE GENERATION SYSTEM
	Parameterizing a Module
	Designer Productivity

	A DESIGN EXAMPLE
	SUMMARY

